1.State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
2020700036@mail.buct.edu.cn (X.Y.Z)
suzq@mail.buct.edu.cn (Z.Q.S)
Scan for full text
Jie Zhou, Xiao-Yuan Zhang, Zhi-Qiang Su. Rational Design of Biomolecules/Polymer Hybrids by Reversible Deactivation Radical Polymerization (RDRP) for Biomedical Applications[J]. Chinese Journal of Polymer Science, 2021,39(9):1093-1109.
Jie Zhou, Xiao-Yuan Zhang, Zhi-Qiang Su. Rational Design of Biomolecules/Polymer Hybrids by Reversible Deactivation Radical Polymerization (RDRP) for Biomedical Applications[J]. Chinese Journal of Polymer Science, 2021,39(9):1093-1109.
Jie Zhou, Xiao-Yuan Zhang, Zhi-Qiang Su. Rational Design of Biomolecules/Polymer Hybrids by Reversible Deactivation Radical Polymerization (RDRP) for Biomedical Applications[J]. Chinese Journal of Polymer Science, 2021,39(9):1093-1109. DOI: 10.1007/s10118-021-2543-x.
Jie Zhou, Xiao-Yuan Zhang, Zhi-Qiang Su. Rational Design of Biomolecules/Polymer Hybrids by Reversible Deactivation Radical Polymerization (RDRP) for Biomedical Applications[J]. Chinese Journal of Polymer Science, 2021,39(9):1093-1109. DOI: 10.1007/s10118-021-2543-x.
Hybrids, produced by hybridization of proteins, peptides, DNA, and other new biomolecules with polymers, often have unique functional properties. These properties, such as biocompatibility, stability and specificity, lead to various smart biomaterials. This review mainly introduces biomolecule-polymer hybrid materials by reversible deactivation radical polymerization (RDRP), emphasizing reverse addition-fragmentation chain transfer (RAFT) polymerization, and nitroxide mediated polymerization (NMP). It includes the methods of RDRP to improve the biocompatibility of biomedical materials and organisms by surface modification. The key to the current synthesis of biomolecule-polymer hybrids is to control polymerization. Besides, this review describes several different kinds of biomolecule-polymer hybrid materials and their applications in the biomedical field. These progresses provide ideas for the investigation of biodegradable and highly bioactive biomedical soft tissue materials. The research hotspots of nanotechnology in biomedical fields are controlled drug release materials and gene therapy carrier materials. Research showed that RDRP method could improve the therapeutic effect and reduce the dosage and side effects of the drug. Specifically, by means of RDRP, the original materials can be modified to develop intelligent polymer materials as membrane materials with selective permeability and surface modification.
Biomolecule-polymer hybridsRDRPBiomedical applicationsDrug releaseNanotechnology
Wang, C. Y.; Jiao, K.; Yan, J. F.; Wan, M.C.; Wan, Q. Q.; Breschi, L.; Chen, J. H.; Tay, F. R.; Niu, L. N. . Biological and synthetic template-directed syntheses of mineralized hybrid and inorganic materials . Prog. Mater. Sci. , 2020 . 100 100712 .
Maghsoudi, S.; Shahraki, B. T.; Rabiee, N.; Afshari, R.; Fatahi, Y.; Dinarvand, R.; Ahmadi, S.; Bagherzadeh, M.; Rabiee, M.; Tayebi, L. . Recent advancements in aptamer-bioconjugates: sharpening stones for breast and prostate cancers targeting . J. Drug. Deliv. Sci. Technol , 2019 . 53 101146 DOI:10.1016/j.jddst.2019.101146http://doi.org/10.1016/j.jddst.2019.101146 .
Chen, C.; Ng, D. Y. W.; Weil, T. . Polymer bioconjugates: modern design concepts toward precision hybrid materials . Prog. Polym. Sci. , 2020 . 100 101241 .
Meng, F.; Hasan, A.; Babadaei, M. M. N.; Kani, P. H.; Talaei, A. J.; Sharifi, M.; Cai, T.; Falahati, M.; Cai, Y. . Polymeric-based microneedle arrays as potential platforms in development of drugs delivery systems . J. Adv. Res. , 2020 .
Paredes-Ramos, M.; Sabín-López, A.; Peña-García, J.; Pérez-Sánchez, H.; López-Vilariño, J.; de Vicente, M. S. . Computational aided acetaminophen–phthalic acid molecularly imprinted polymer design for analytical determination of known and new developed recreational drugs . J. Mol. Graph. Model. , 2020 . 107627 .
Kim, Y. M.; Lee, Y. S.; Kim, T.; Yang, K.; Nam, K.; Choe, D.; Roh, Y. H. . Cationic cellulose nanocrystals complexed with polymeric siRNA for efficient anticancer drug delivery . Carbohydr. Polym. , 2020 . 247 116684 DOI:10.1016/j.carbpol.2020.116684http://doi.org/10.1016/j.carbpol.2020.116684 .
Messina, M. S.; Messina, K. M.; Bhattacharya, A.; Montgomery, H. R.; Maynard, H. D. . Preparation of biomolecule-polymer conjugates by grafting-from using ATRP, RAFT, or ROMP . Prog. Polym. Sci. , 2020 . 100 101186 DOI:10.1016/j.progpolymsci.2019.101186http://doi.org/10.1016/j.progpolymsci.2019.101186 .
Xiong, Q.; Zhang, X.; Wei, W.; Wei, G.; Su, Z. . Enzyme-mediated reversible deactivation radical polymerization for functional materials: principles, synthesis, and applications . Polym. Chem. , 2020 . 11 1673 -1690 . DOI:10.1039/D0PY00136Hhttp://doi.org/10.1039/D0PY00136H .
Wei, W.; Zhang, X.; Zhang, S.; Wei, G.; Su, Z. . Biomedical and bioactive engineered nanomaterials for targeted tumor photothermal therapy: a review . Mater. Sci. Eng. C. , 2019 . 104 109891 DOI:10.1016/j.msec.2019.109891http://doi.org/10.1016/j.msec.2019.109891 .
Gong, C.; Sun, S.; Zhang, Y.; Sun, L.; Su, Z.; Wu, A.; Wei, G. . Hierarchical nanomaterials via biomolecular self-assembly and bioinspiration for energy and environmental applications . Nanoscale , 2019 . 11 4147 -4182 . DOI:10.1039/C9NR00218Ahttp://doi.org/10.1039/C9NR00218A .
Glasing, J.; Champagne, P.; Cunningham, M. F. . Graft modification of chitosan, cellulose and alginate using reversible deactivation radical polymerization (RDRP) . Curr. Opin. Green Sust. , 2016 . 2 15 -21 . DOI:10.1016/j.cogsc.2016.09.002http://doi.org/10.1016/j.cogsc.2016.09.002 .
Shipp, D. A. . Reversible-deactivation radical polymerizations . Polym. Rev. , 2011 . 51 99 -103 . DOI:10.1080/15583724.2011.566406http://doi.org/10.1080/15583724.2011.566406 .
Ghadban, A.; Albertin, L. . Synthesis of glycopolymer architectures by reversible-deactivation radical polymerization . Polymers , 2013 . 5 431 -526 . DOI:10.3390/polym5020431http://doi.org/10.3390/polym5020431 .
Webster, O. W. . Living polymerization methods . Science , 1991 . 251 887 -893 . DOI:10.1126/science.251.4996.887http://doi.org/10.1126/science.251.4996.887 .
Xia, J.; Gaynor, S. G.; Matyjaszewski, K. . Controlled/“living” radical polymerization. Atom transfer radical polymerization of acrylates at ambient temperature . Macromolecules , 1998 . 31 5958 -5959 . DOI:10.1021/ma980725bhttp://doi.org/10.1021/ma980725b .
Xia, J.; Matyjaszewski, K. . Controlled/“living” radical polymerization. Atom transfer radical polymerization using multidentate amine ligands . Macromolecules , 1997 . 30 7697 -7700 . DOI:10.1021/ma971009xhttp://doi.org/10.1021/ma971009x .
Matyjaszewski, K.; Gaynor, S.; Greszta, D.; Mardare, D.; Shigemoto, T. . ‘Living’ and controlled radical polymerization . J. Org. Chem , 1995 . 8 306 -315. .
Moad, G.; Anderson, A. G.; Ercole, F.; Johnson, C. H.; Krstina, J.; Moad, C. L.; Rizzardo, E.; Spurling, T. H.; Thang, S. H. . Controlled-growth free-radical polymerization of methacrylate esters: reversible chain transfer versus reversible termination . ACS Symp. , 1998 . 685 332 -360. .
Wang, Y.; Fantin, M.; Park, S.; Gottlieb, E.; Fu, L.; Matyjaszewski, K. . Electrochemically mediated reversible addition–fragmentation chain-transfer polymerization . Macromolecules , 2017 . 50 7872 -7879 . DOI:10.1021/acs.macromol.7b02005http://doi.org/10.1021/acs.macromol.7b02005 .
Magenau, A. J.; Strandwitz, N. C.; Gennaro, A.; Matyjaszewski, K. . Electrochemically mediated atom transfer radical polymerization . Science , 2011 . 332 81 -84 . DOI:10.1126/science.1202357http://doi.org/10.1126/science.1202357 .
Fors, B. P.; Hawker, C. J. . Control of a living radical polymerization of methacrylates by light . Angew. Chem. , 2012 . 124 8980 -8983 . DOI:10.1002/ange.201203639http://doi.org/10.1002/ange.201203639 .
Tao, L.; Kaddis, C. S.; Loo, R. R. O.; Grover, G. N.; Loo, J. A.; Maynard, H. D. . Synthetic approach to homodimeric protein-polymer conjugates . Chem. Commun. , 2009 . 2148 -2150. .
Corrigan, N.; Jung, K.; Moad, G.; Hawker, C. J.; Matyjaszewski, K.; Boyer, C. . Reversible-deactivation radical polymerization (controlled/living radical polymerization): from discovery to materials design and applications . Prog. Polym. Sci. , 2020 . 101311 .
Yeow, J.; Chapman, R.; Gormley, A. J.; Boyer, C. . Up in the air: oxygen tolerance in controlled/living radical polymerisation . Chem. Soc. Rev. , 2018 . 47 4357 -4387 . DOI:10.1039/C7CS00587Chttp://doi.org/10.1039/C7CS00587C .
Chenal, M.; Boursier, C.; Guillaneuf, Y.; Taverna, M.; Couvreur, P.; Nicolas, J. . First peptide/protein PEGylation with functional polymers designed by nitroxide-mediated polymerization . Polym. Chem. , 2011 . 2 1523 -1530 . DOI:10.1039/c1py00028dhttp://doi.org/10.1039/c1py00028d .
He, P.; He, L. . Synthesis of surface-anchored DNA-polymer bioconjugates using reversible addition? fragmentation chain transfer polymerization. . Biomacromolecules , 2009 . 10 1804 -1809 . DOI:10.1021/bm9002283http://doi.org/10.1021/bm9002283 .
Wilks, T. R.; Bath, J.; de Vries, J. W.; Raymond, J. E.; Herrmann, A.; Turberfield, A. J.; O’Reilly, R. K. . “Giant surfactants” created by the fast and efficient functionalization of a DNA tetrahedron with a temperature-responsive polymer . ACS Nano , 2013 . 7 8561 -8572 . DOI:10.1021/nn402642ahttp://doi.org/10.1021/nn402642a .
Averick, S.; Mehl, R. A.; Das, S. R.; Matyjaszewski, K. . Well-defined biohybrids using reversible-deactivation radical polymerization procedures . J. Control. Release , 2015 . 205 45 -57 . DOI:10.1016/j.jconrel.2014.11.030http://doi.org/10.1016/j.jconrel.2014.11.030 .
Matyjaszewski, K.; Tsarevsky, N. V. . Macromolecular engineering by atom transfer radical polymerization . J. Am. Chem. Soc. , 2014 . 136 6513 -6533 . DOI:10.1021/ja408069vhttp://doi.org/10.1021/ja408069v .
Zhang, H.; Deng, J.; Lu, L.; Cai, Y. . Ambient-temperature RAFT polymerization of styrene and its functional derivatives under mild long-wave UV-Vis radiation . Macromolecules , 2007 . 40 9252 -9261 . DOI:10.1021/ma071287ohttp://doi.org/10.1021/ma071287o .
Barner-Kowollik, C.; Perrier, S. . The future of reversible addition fragmentation chain transfer polymerization . J. Polym. Sci., Part A: Polym. Chem. , 2008 . 46 5715 -5723 . DOI:10.1002/pola.22866http://doi.org/10.1002/pola.22866 .
Smith, A. E.; Xu, X.; McCormick, C. L. . Stimuli-responsive amphiphilic (co)polymers via RAFT polymerization . Prog. Polym. Sci. , 2010 . 35 45 -93 . DOI:10.1016/j.progpolymsci.2009.11.005http://doi.org/10.1016/j.progpolymsci.2009.11.005 .
Lebreton, P.; Ameduri, B.; Boutevin, B.; Corpart, J. M. . Use of original ω-perfluorinated dithioesters for the synthesis of well-controlled polymers by reversible addition-fragmentation chain transfer (RAFT) . Macromol. Chem. Phys. , 2002 . 203 522 -537 . DOI:10.1002/1521-3935(20020201)203:3<522::AID-MACP522>3.0.CO;2-Lhttp://doi.org/10.1002/1521-3935(20020201)203:3<522::AID-MACP522>3.0.CO;2-L .
Sciannamea, V.; Jérôme, R.; Detrembleur, C. . In-situ nitroxide-mediated radical polymerization (NMP) processes: their understanding and optimization . Chem. Rev. , 2008 . 108 1104 -1126 . DOI:10.1021/cr0680540http://doi.org/10.1021/cr0680540 .
Watts, R. N.; Hawkins, C.; Ponka, P.; Richardson, D. R. . Nitrogen monoxide (NO)-mediated iron release from cells is linked to NO-induced glutathione efflux via multidrug resistance-associated protein 1 . Proc. Natl. Acad. Sci. , 2006 . 103 7670 -7675 . DOI:10.1073/pnas.0602515103http://doi.org/10.1073/pnas.0602515103 .
Guillaneuf, Y.; Gigmes, D.; Marque, S. R.; Tordo, P.; Bertin, D. . Nitroxide-mediated polymerization of methyl methacrylate using an SG1-based alkoxyamine: how the penultimate effect could lead to uncontrolled and unliving polymerization . Macromol. Chem. Phys. , 2006 . 207 1278 -1288 . DOI:10.1002/macp.200600125http://doi.org/10.1002/macp.200600125 .
Hong, S. C.; Pakula, T.; Matyjaszewski, K. . Preparation of polyisobutene-graft-poly(methyl methacrylate) and polyisobutene-graft-polystyrene with different compositions and side chain architectures through atom transfer radical polymerization (ATRP) . Macromol. Chem. Phys. , 2001 . 202 3392 -3402 . DOI:10.1002/1521-3935(20011101)202:17<3392::AID-MACP3392>3.0.CO;2-4http://doi.org/10.1002/1521-3935(20011101)202:17<3392::AID-MACP3392>3.0.CO;2-4 .
Siegwart, D. J.; Oh, J. K.; Matyjaszewski, K. . ATRP in the design of functional materials for biomedical applications . Prog. Polym. Sci. , 2012 . 37 18 -37 . DOI:10.1016/j.progpolymsci.2011.08.001http://doi.org/10.1016/j.progpolymsci.2011.08.001 .
Sumerlin, B. S.; Tsarevsky, N. V.; Louche, G.; Lee, R. Y.; Matyjaszewski, K. . Highly efficient “click” functionalization of poly(3-azidopropyl methacrylate) prepared by ATRP . Macromolecules , 2005 . 38 7540 -7545 . DOI:10.1021/ma0511245http://doi.org/10.1021/ma0511245 .
Gao, H.; Matyjaszewski, K. . Low-polydispersity star polymers with core functionality by cross-linking macromonomers using functional ATRP initiators . Macromolecules , 2007 . 40 399 -401. .
Maguire, M.; Poole, S.; Coates, A. R.; Tormay, P.; Wheeler-Jones, C.; Henderson, B. . Comparative cell signalling activity of ultrapure recombinant chaperonin 60 proteins from prokaryotes and eukaryotes . Immunology , 2005 . 115 231 -238 . DOI:10.1111/j.1365-2567.2005.02155.xhttp://doi.org/10.1111/j.1365-2567.2005.02155.x .
Hardy, C. G.; Zhang, J.; Yan, Y.; Ren, L.; Tang, C. . Metallopolymers with transition metals in the side-chain by living and controlled polymerization techniques . Prog. Polym. Sci. , 2014 . 39 1742 -1796 . DOI:10.1016/j.progpolymsci.2014.03.002http://doi.org/10.1016/j.progpolymsci.2014.03.002 .
Buchmeiser, M. R.; Sinner, F.; Mupa, M.; Wurst, K. . Ring-opening metathesis polymerization for the preparation of surface-grafted polymer supports . Macromolecules , 2000 . 33 32 -39 . DOI:10.1021/ma9913966http://doi.org/10.1021/ma9913966 .
Isarov, S. A.; Pokorski, J. K. . Protein ROMP: aqueous graft-from ring-opening metathesis polymerization . ACS Macro Lett. , 2015 . 4 969 -973 . DOI:10.1021/acsmacrolett.5b00497http://doi.org/10.1021/acsmacrolett.5b00497 .
Héroguez, V.; Chemtob, A.; Quemener, D. ROMP in dispersed media. In Handbook of metathesis. Wiley-VCH Verlag GmbH & Co. KGaA, 2015, 25−44.
Jagur-Grodzinski, J. . Functional polymers by living anionic polymerization . J. Polym. Sci., Part A: Polym. Chem. , 2002 . 40 2116 -2133 . DOI:10.1002/pola.10291http://doi.org/10.1002/pola.10291 .
Matsuoka, D.; Goseki, R.; Uchida, S.; Ishizone, T. . Living anionic polymerization of 1-adamantyl 4-vinylphenyl ketone . Macromol. Chem. Phys. , 2017 . 218 1700015 DOI:10.1002/macp.201700015http://doi.org/10.1002/macp.201700015 .
Haraguchi, R.; Nishikawa, T.; Kanazawa, A.; Aoshima, S. . Metal-free living cationic polymerization using diaryliodonium salts as organic lewis acid catalysts . Macromolecules , 2020 . 53 4185 -4192 . DOI:10.1021/acs.macromol.0c00823http://doi.org/10.1021/acs.macromol.0c00823 .
Aoshima, S.; Kanaoka, S. . A Renaissance in living cationic polymerization . Chem. Rev. , 2009 . 109 5245 -5287 . DOI:10.1021/cr900225ghttp://doi.org/10.1021/cr900225g .
Liu, D.; He, J.; Zhang, L.; Tan, J. . 100th Anniversary of macromolecular science viewpoint: heterogenous reversible deactivation radical polymerization at room temperature. Recent advances and future opportunities . ACS Macro Lett. , 2019 . 8 1660 -1669 . DOI:10.1021/acsmacrolett.9b00870http://doi.org/10.1021/acsmacrolett.9b00870 .
Torres-Rocha, O. L.; Wu, X.; Zhu, C.; Crudden, C. M.; Cunningham, M. F. . Polymerization-induced self-assembly (PISA) of 1,5-cyclooctadiene using ring opening metathesis polymerization . Macromol. Rapid Commun. , 2019 . 40 1800326 DOI:10.1002/marc.201800326http://doi.org/10.1002/marc.201800326 .
Dai, X.; Yu, L.; Zhang, Y.; Zhang, L.; Tan, J. . Polymerization-induced self-assembly via RAFT-mediated emulsion polymerization of methacrylic monomers . Macromolecules , 2019 . 52 7468 -7476 . DOI:10.1021/acs.macromol.9b01689http://doi.org/10.1021/acs.macromol.9b01689 .
Tan, J.; Xu, Q.; Zhang, Y.; Huang, C.; Li, X.; He, J.; Zhang, L. . Room temperature synthesis of self-assembled ab/b and abc/bc blends by photoinitiated polymerization-induced self-assembly (photo-PISA) in water . Macromolecules , 2018 . 51 7396 -7406 . DOI:10.1021/acs.macromol.8b01456http://doi.org/10.1021/acs.macromol.8b01456 .
He, J.; Cao, J.; Chen, Y.; Zhang, L.; Tan, J. . Thermoresponsive block copolymer vesicles by visible light-initiated seeded polymerization-induced self-assembly for temperature-regulated enzymatic nanoreactors . ACS Macro Lett. , 2020 . 9 533 -539 . DOI:10.1021/acsmacrolett.0c00151http://doi.org/10.1021/acsmacrolett.0c00151 .
Kedracki, D.; Maroni, P.; Schlaad, H.; Vebert-Nardin, C. . Polymer–aptamer hybrid emulsion templating yields bioresponsive nanocapsules . Adv. Funct. Mater. , 2014 . 24 1133 -1139 . DOI:10.1002/adfm.201302475http://doi.org/10.1002/adfm.201302475 .
Adhikary, P.; Tiwari, K.; Singh, R. . Synthesis, characterization, and flocculation characteristics of polyacrylamide-grafted glycogen . J. Appl. Polym. Sci. , 2007 . 103 773 -778 . DOI:10.1002/app.25043http://doi.org/10.1002/app.25043 .
Seaberg, J.; Kaabipour, S.; Hemmati, S.; Ramsey, J. D. . A rapid millifluidic synthesis of tunable polymer-protein nanoparticles . Eur. J. Pharm. Biopharm. , 2020 . 154 127 -135 . DOI:10.1016/j.ejpb.2020.07.006http://doi.org/10.1016/j.ejpb.2020.07.006 .
Baldwin, A. D.; Kiick, K. L. . Polysaccharide-modified synthetic polymeric biomaterials . Peptide Sci. , 2010 . 94 128 -140 . DOI:10.1002/bip.21334http://doi.org/10.1002/bip.21334 .
Fujita, M.; Shoda, S. i.; Kobayashi, S. . Xylanase-catalyzed synthesis of a novel polysaccharide having a glucose-xylose repeating unit, a cellulose-xylan hybrid polymer . J. Am. Chem. Soc. , 1998 . 120 6411 -6412 . DOI:10.1021/ja980893jhttp://doi.org/10.1021/ja980893j .
Vicent, M. J.; Duncan, R. . Polymer conjugates: nanosized medicines for treating cancer . Trends Biotechnol. , 2006 . 24 39 -47 . DOI:10.1016/j.tibtech.2005.11.006http://doi.org/10.1016/j.tibtech.2005.11.006 .
Lutolf, M.; Hubbell, J. . Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering . Nat. Biotechnol. , 2005 . 23 47 -55 . DOI:10.1038/nbt1055http://doi.org/10.1038/nbt1055 .
Lin, J.; Bao, Y. X.; Lam, W.; L, W. W.; Lu, F.; Zhu, X.; Liu, J.; Wang, H. P. . Immunoregulatory and anti-tumor effects of polysaccharopeptide and astragalus polysaccharides on tumor-bearing mice . Immunopharm. Immunot. , 2008 . 30 771 -782 . DOI:10.1080/08923970802279183http://doi.org/10.1080/08923970802279183 .
Miadoková, E.; Svidová, S.; Vlčková, V.; Kogan, G.; Rauko, P. . The role of microbial polysaccharides in cancer prevention and therapy . J Cancer Integrative Med. , 2004 . 2 1738 .
Deeley, R. G.; Westlake, C.; Cole, S. P. . Transmembrane transport of endo-and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins . Physiol. Rev. , 2006 . 86 849 -899 . DOI:10.1152/physrev.00035.2005http://doi.org/10.1152/physrev.00035.2005 .
Xu, X.; Cui, Y.; Bu, H.; Chen, J.; Li, Y.; Tang, G.; Wang, L. Q. . A photosensitizer loaded hemoglobin–polymer conjugate as a nanocarrier for enhanced photodynamic therapy . J. Mater. Chem. B , 2018 . 6 1825 -1833 . DOI:10.1039/C7TB03109Bhttp://doi.org/10.1039/C7TB03109B .
Makwana, H.; Mastrotto, F.; Magnusson, J. P.; Sleep, D.; Hay, J.; Nicholls, K. J.; Allen, S.; Alexander, C. . Engineered polymer–transferrin conjugates as self-assembling targeted drug delivery systems . Biomacromolecules , 2017 . 18 1532 -1543 . DOI:10.1021/acs.biomac.7b00101http://doi.org/10.1021/acs.biomac.7b00101 .
Duro-Castano, A.; Lim, N. H.; Tranchant, I.; Amoura, M.; Beau, F.; Wieland, H.; Kingler, O.; Herrmann, M.; Nazaré, M.; Plettenburg, O. . In vivo imaging of MMP-13 activity using a specific polymer-FRET peptide conjugate detects early osteoarthritis and inhibitor efficacy . Adv. Funct. Mater. , 2018 . 28 1802738 DOI:10.1002/adfm.201802738http://doi.org/10.1002/adfm.201802738 .
Gao, D.; Zhang, P.; Liu, Y.; Sheng, Z.; Chen, H.; Yuan, Z. . Protein-modified conjugated polymer nanoparticles with strong near-infrared absorption: a novel nanoplatform to design multifunctional nanoprobes for dual-modal photoacoustic and fluorescence imaging . Nanoscale , 2018 . 10 19742 -19748 . DOI:10.1039/C8NR06197Ahttp://doi.org/10.1039/C8NR06197A .
Faust, H. J.; Sommerfeld, S. D.; Rathod, S.; Rittenbach, A.; Banerjee, S. R.; Tsui, B. M.; Pomper, M.; Amzel, M. L.; Singh, A.; Elisseeff, J. H. . A hyaluronic acid binding peptide-polymer system for treating osteoarthritis . Biomaterials , 2018 . 183 93 -101 . DOI:10.1016/j.biomaterials.2018.08.045http://doi.org/10.1016/j.biomaterials.2018.08.045 .
Bao, X.; Fan, X.; Yu, Y.; Wang, Q.; Wang, P.; Yuan, J. . Graft modification of lignin-based cellulose via enzyme-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization and free-radical coupling . Int. J. Biol. Macromol. , 2020 . 144 267 -278 . DOI:10.1016/j.ijbiomac.2019.12.078http://doi.org/10.1016/j.ijbiomac.2019.12.078 .
Ramirez, L. M. F.; Babin, J.; Boudier, A.; Gaucher, C.; Schmutz, M.; Er-Rafik, M.; Durand, A.; Six, J. L.; Nouvel, C. . First multi-reactive polysaccharide-based transurf to produce potentially biocompatible dextran-covered nanocapsules . Carbohydr. Polym. , 2019 . 224 115153 DOI:10.1016/j.carbpol.2019.115153http://doi.org/10.1016/j.carbpol.2019.115153 .
Cazotti, J. C.; Fritz, A. T.; Garcia-Valdez, O.; Smeets, N. M.; Dubé, M. A.; Cunningham, M. F. . Grafting from starch nanoparticles with synthetic polymers via nitroxide-mediated polymerization . Macromol. Rapid Commun. , 2019 . 40 1800834 DOI:10.1002/marc.201800834http://doi.org/10.1002/marc.201800834 .
Song, W.; Xiao, C.; Cui, L.; Tang, Z.; Zhuang, X.; Chen, X. . Facile construction of functional biosurface via SI-ATRP and “click glycosylation” . Colloids Surf. B , 2012 . 93 188 -194 . DOI:10.1016/j.colsurfb.2012.01.002http://doi.org/10.1016/j.colsurfb.2012.01.002 .
Rowland, G.; O'neill, G.; Davies, D. . Suppression of tumour growth in mice by a drug-antibody conjugate using a novel approach to linkage . Nature , 1975 . 255 487 -488 . DOI:10.1038/255487a0http://doi.org/10.1038/255487a0 .
Cazotti, J. C.; Fritz, A. T.; Garcia-Valdez, O.; Smeets, N. M.; Dubé, M. A.; Cunningham, M. F. . Graft modification of starch nanoparticles using nitroxide-mediated polymerization and the grafting from approach . Carbohydr. Polym. , 2020 . 228 115384 DOI:10.1016/j.carbpol.2019.115384http://doi.org/10.1016/j.carbpol.2019.115384 .
Porter, C. J.; Werber, J. R.; Ritt, C. L.; Guan, Y. F.; Zhong, M.; Elimelech, M. . Controlled grafting of polymer brush layers from porous cellulosic membranes . J. Membr. Sci. , 2020 . 596 117719 DOI:10.1016/j.memsci.2019.117719http://doi.org/10.1016/j.memsci.2019.117719 .
Ding, Z.; Fong, R. B.; Long, C. J.; Stayton, P. S.; Hoffman, A. S. . Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield . Nature , 2001 . 411 59 -62 . DOI:10.1038/35075028http://doi.org/10.1038/35075028 .
Qi, G. B.; Gao, Y. J.; Wang, L.; Wang, H. . Self-assembled peptide-based nanomaterials for biomedical imaging and therapy . Adv. Mater. , 2018 . 30 1703444 DOI:10.1002/adma.201703444http://doi.org/10.1002/adma.201703444 .
Zhang, L.; Beatty, A.; Lu, L.; Abdalrahman, A.; Makris, T.; Wang, G.; Wang, Q. . Microfluidic-assisted polymer-protein assembly to fabricate homogeneous functional nanoparticles . Mater. Sci. Eng. C , 2020 . 110768 .
Kapishon, V.; Whitney, R. A.; Champagne, P.; Cunningham, M. F.; Neufeld, R. J. . Polymerization induced self-assembly of alginate based amphiphilic graft copolymers synthesized by single electron transfer living radical polymerization . Biomacromolecules , 2015 . 16 2040 -2048 . DOI:10.1021/acs.biomac.5b00470http://doi.org/10.1021/acs.biomac.5b00470 .
Johnson, J. A.; Finn, M.; Koberstein, J. T.; Turro, N. J. . Construction of linear polymers, dendrimers, networks, and other polymeric architectures by copper-catalyzed azide-alkyne cycloaddition “click” chemistry . Macromol. Rapid Commun. , 2008 . 29 1052 -1072 . DOI:10.1002/marc.200800208http://doi.org/10.1002/marc.200800208 .
Meldal, M.; Tornøe, C. W. . Cu-catalyzed azide-alkyne cycloaddition . Chem. Rev. , 2008 . 108 2952 -3015 . DOI:10.1021/cr0783479http://doi.org/10.1021/cr0783479 .
Lutz, J. F.; Zarafshani, Z. . Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide–alkyne “click” chemistry . Adv. Drug. Deliv. Rev. , 2008 . 60 958 -970 . DOI:10.1016/j.addr.2008.02.004http://doi.org/10.1016/j.addr.2008.02.004 .
Bao, H.; Li, L.; Gan, L. H.; Ping, Y.; Li, J.; Ravi, P. . Thermo- and pH-responsive association behavior of dual hydrophilic graft chitosan terpolymer synthesized via ATRP and click chemistry . Macromolecules , 2010 . 43 5679 -5687 . DOI:10.1021/ma100894phttp://doi.org/10.1021/ma100894p .
Zhang, K.; Zhuang, P.; Wang, Z.; Li, Y.; Jiang, Z.; Hu, Q.; Liu, M.; Zhao, Q. . One-pot synthesis of chitosan-g-(PEO-PLLA-PEO) via “click” chemistry and “SET-NRC” reaction . Carbohydr. Polym. , 2012 . 90 1515 -1521 . DOI:10.1016/j.carbpol.2012.07.023http://doi.org/10.1016/j.carbpol.2012.07.023 .
Canning, S. L.; Smith, G. N.; Armes, S. P. . A critical appraisal of RAFT-mediated polymerization-induced self-assembly . Macromolecules , 2016 . 49 1985 -2001 . DOI:10.1021/acs.macromol.5b02602http://doi.org/10.1021/acs.macromol.5b02602 .
Karagoz, B.; Esser, L.; Duong, H. T.; Basuki, J. S.; Boyer, C.; Davis, T. P. . Polymerization-induced self-assembly (PISA)–control over the morphology of nanoparticles for drug delivery applications . Polym. Chem. , 2014 . 5 350 -355 . DOI:10.1039/C3PY01306Ehttp://doi.org/10.1039/C3PY01306E .
Dao, T. T.; Vezenkov, L.; Subra, G.; Amblard, M.; In, M.; Le Meins, J. F. O.; Aubrit, F.; Moradi, M. A.; Ladmiral, V.; Semsarilar, M. . Self-assembling peptide-polymer nano-objects via polymerization-induced self-assembly . Macromolecules , 2020 . 53 7034 -7043 . DOI:10.1021/acs.macromol.0c01260http://doi.org/10.1021/acs.macromol.0c01260 .
Tsao, C.; Zhang, P.; Yuan, Z.; Dong, D.; Wu, K.; Niu, L.; McMullen, P.; Luozhong, S.; Hung, H. C.; Cheng, Y. H. . Zwitterionic polymer conjugated glucagon-like peptide-1 for prolonged glycemic control . Bioconjug. Chem. , 2020 . 31 1812 -1819 . DOI:10.1021/acs.bioconjchem.0c00286http://doi.org/10.1021/acs.bioconjchem.0c00286 .
Crooke, S. N.; Zheng, J.; Ganewatta, M. S.; Guldberg, S. M.; Reineke, T. M.; Finn, M. . Immunological properties of protein–polymer nanoparticles . ACS Appl. Biomater. , 2018 . 2 93 -103. .
Nandi, S.; Kundu, A.; Das, P.; Nandi, A. K. . Facile synthesis of water soluble, fluorescent DNA-polymer conjugate via enzymatic polymerization for cell imaging . J. Nanosci. Nanotechnol. , 2017 . 17 5168 -5174 . DOI:10.1166/jnn.2017.13839http://doi.org/10.1166/jnn.2017.13839 .
Lueckerath, T.; Strauch, T.; Koynov, K.; Barner-Kowollik, C.; Ng, D. Y.; Weil, T. . DNA–polymer conjugates by photoinduced RAFT polymerization . Biomacromolecules , 2018 . 20 212 -221. .
Noteborn, W. E.; Wondergem, J. A.; Iurchenko, A.; Chariyev-Prinz, F.; Donato, D.; Voets, I. K.; Heinrich, D.; Kieltyka, R. E. . Grafting from a hybrid DNA–covalent polymer by the hybridization chain reaction . Macromolecules , 2018 . 51 5157 -5164 . DOI:10.1021/acs.macromol.7b02610http://doi.org/10.1021/acs.macromol.7b02610 .
Hadinoto, K.; Sundaresan, A.; Cheow, W. S. . Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review . Eur. J. Pharm. Biopharm. , 2013 . 85 427 -443 . DOI:10.1016/j.ejpb.2013.07.002http://doi.org/10.1016/j.ejpb.2013.07.002 .
Wong, H. L.; Bendayan, R.; Rauth, A. M.; Xue, H. Y.; Babakhanian, K.; Wu, X. Y. . A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer-lipid hybrid nanoparticle system . J. Pharmacol. Exp. Ther. , 2006 . 317 1372 -1381 . DOI:10.1124/jpet.106.101154http://doi.org/10.1124/jpet.106.101154 .
Woodle, M. C.; Newman, M. S.; Cohen, J. A. . Sterically stabilized liposomes: physical and biological properties . J. Drug. Target. , 1994 . 2 397 -403 . DOI:10.3109/10611869408996815http://doi.org/10.3109/10611869408996815 .
Tomaás, R., M.; Gibson, M. I. . Optimization and stability of cell–polymer hybrids obtained by “clicking” synthetic polymers to metabolically labeled cell surface glycans . Biomacromolecules , 2019 . 20 2726 -2736 . DOI:10.1021/acs.biomac.9b00478http://doi.org/10.1021/acs.biomac.9b00478 .
Mammen, M.; Choi, S. K.; Whitesides, G. M. . Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors . Angew. Chem. Int. Ed. , 1998 . 37 2754 -2794 . DOI:10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3http://doi.org/10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3 .
Zhou, C.; Reesink, H. L.; Putnam, D. A. . Selective and tunable galectin binding of glycopolymers synthesized by a generalizable conjugation method . Biomacromolecules , 2019 . 20 3704 -3712 . DOI:10.1021/acs.biomac.9b00759http://doi.org/10.1021/acs.biomac.9b00759 .
Yang, L.; Sun, H.; Liu, Y.; Hou, W.; Yang, Y.; Cai, R.; Cui, C.; Zhang, P.; Pan, X.; Li, X. . Self-assembled aptamer-grafted hyperbranched polymer nanocarrier for targeted and photoresponsive drug delivery . Angew. Chem. , 2018 . 130 17294 -17298 . DOI:10.1002/ange.201809753http://doi.org/10.1002/ange.201809753 .
Mansur, A.; Mansur, H.; González, J. . Enzyme-polymers conjugated to quantum-dots for sensing applications . Sensors , 2011 . 11 9951 -9972 . DOI:10.3390/s111009951http://doi.org/10.3390/s111009951 .
Liu, Y.; Nevanen, T. K.; Paananen, A.; Kempe, K.; Wilson, P.; Johansson, L. S.; Joensuu, J. J.; Linder, M. B.; Haddleton, D. M.; Milani, R. . Self-assembling protein–polymer bioconjugates for surfaces with antifouling features and low nonspecific binding . ACS Appl. Mater. Interfaces , 2018 . 11 3599 -3608. .
Ha, D.; Yang, N.; Nadithe, V. . Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges . Acta. Pharm. Sin. B , 2016 . 6 287 -296 . DOI:10.1016/j.apsb.2016.02.001http://doi.org/10.1016/j.apsb.2016.02.001 .
Mathiowitz, E.; Saltzman, W.; Domb, A.; Dor, P.; Langer, R. . Polyanhydride microspheres as drug carriers. II. Microencapsulation by solvent removal . J. Appl. Polym. Sci. , 1988 . 35 755 -774 . DOI:10.1002/app.1988.070350316http://doi.org/10.1002/app.1988.070350316 .
Hawkins, M. J.; Soon-Shiong, P.; Desai, N. . Protein nanoparticles as drug carriers in clinical medicine . Adv. Drug. Deliv. Rev. , 2008 . 60 876 -885 . DOI:10.1016/j.addr.2007.08.044http://doi.org/10.1016/j.addr.2007.08.044 .
Wahajuddin, S. A. . Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers . Int. J. Nanomedicine , 2012 . 7 3445 .
Li, J.; Ma, Y. J.; Wang, Y.; Chen, B. Z.; Guo, X. D.; Zhang, C. Y. . Dual redox/pH-responsive hybrid polymer-lipid composites: synthesis, preparation, characterization and application in drug delivery with enhanced therapeutic efficacy . Chem. Eng. J. , 2018 . 341 450 -461 . DOI:10.1016/j.cej.2018.02.055http://doi.org/10.1016/j.cej.2018.02.055 .
Jiang, P.; Jacobs, K. M.; Ohr, M. P.; Swindle-Reilly, K. E. . Chitosan–polycaprolactone core–shell microparticles for sustained delivery of bevacizumab . Mol. Pharmaceut. , 2020 . 17 2570 -2584 . DOI:10.1021/acs.molpharmaceut.0c00260http://doi.org/10.1021/acs.molpharmaceut.0c00260 .
Suh, J. K. F.; Matthew, H. W. . Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review . Biomaterials , 2000 . 21 2589 -2598 . DOI:10.1016/S0142-9612(00)00126-5http://doi.org/10.1016/S0142-9612(00)00126-5 .
Ma, P. X. . Biomimetic materials for tissue engineering . Adv. Drug. Deliv. Rev. , 2008 . 60 184 -198 . DOI:10.1016/j.addr.2007.08.041http://doi.org/10.1016/j.addr.2007.08.041 .
Solchaga, L. A.; Dennis, J. E.; Goldberg, V. M.; Caplan, A. I. . Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage . J. Orthop. Res. , 1999 . 17 205 -213 . DOI:10.1002/jor.1100170209http://doi.org/10.1002/jor.1100170209 .
Hutmacher, D. W. . Scaffolds in tissue engineering bone and cartilage . Biomaterials , 2000 . 21 2529 -2543 . DOI:10.1016/S0142-9612(00)00121-6http://doi.org/10.1016/S0142-9612(00)00121-6 .
Ohgushi, H., Tissue engineering using bioceramics. In Bioceramics and their Clinical Applications, Woodhead Publishing 2008, 718−736.
Mishra, R.; Varshney, R.; Das, N.; Sircar, D.; Roy, P. . Synthesis and characterization of gelatin-PVP polymer composite scaffold for potential application in bone tissue engineering . Eur. Polym. J. , 2019 . 119 155 -168 . DOI:10.1016/j.eurpolymj.2019.07.007http://doi.org/10.1016/j.eurpolymj.2019.07.007 .
Kim, S. H.; Thambi, T.; Phan, V. G.; Lee, D. S. . Modularly engineered alginate bioconjugate hydrogel as biocompatible injectable scaffold for in situ biomineralization . Carbohydr. Polym. , 2020 . 233 115832 DOI:10.1016/j.carbpol.2020.115832http://doi.org/10.1016/j.carbpol.2020.115832 .
Zou, L.; Zhang, Y.; Liu, X.; Chen, J.; Zhang, Q. . Biomimetic mineralization on natural and synthetic polymers to prepare hybrid scaffolds for bone tissue engineering . Colloids Surf. B , 2019 . 178 222 -229 . DOI:10.1016/j.colsurfb.2019.03.004http://doi.org/10.1016/j.colsurfb.2019.03.004 .
Nelson, R. W.; Nedelkov, D.; Tubbs, K. A. . Biosensor chip mass spectrometry: a chip-based proteomics approach . Electrophoresis , 2000 . 21 1155 -1163 . DOI:10.1002/(SICI)1522-2683(20000401)21:6<1155::AID-ELPS1155>3.0.CO;2-Xhttp://doi.org/10.1002/(SICI)1522-2683(20000401)21:6<1155::AID-ELPS1155>3.0.CO;2-X .
Cornell, B. A.; Braach-Maksvytis, V.; King, L.; Osman, P.; Raguse, B.; Wieczorek, L.; Pace, R. . A biosensor that uses ion-channel switches . Nature , 1997 . 387 580 -583 . DOI:10.1038/42432http://doi.org/10.1038/42432 .
Pandey, C. M.; Malhotra, B. D. Biosensors: fundamentals and applications. Walter de Gruyter GmbH & Co KG: 2019.
Gu, T.; Zhang, Y.; Deng, F.; Zhang, J.; Hasebe, Y. . Direct electrochemistry of glucose oxidase and biosensing for glucose based on DNA/chitosan film . J. Environ. Sci. , 2011 . 23 S66 -S69 . DOI:10.1016/S1001-0742(11)61080-2http://doi.org/10.1016/S1001-0742(11)61080-2 .
Yoo, E. H.; Lee, S. Y. . Glucose biosensors: an overview of use in clinical practice . Sensors , 2010 . 10 4558 -4576 . DOI:10.3390/s100504558http://doi.org/10.3390/s100504558 .
Yang, Y.; Nam, S.; Lee, W. Y. . Tris(2,2′-bipyridyl) ruthenium(II) electrogenerated chemiluminescence ethanol biosensor based on ionic liquid doped titania-Nafion composite film . Microchem. J. , 2018 . 142 62 -69 . DOI:10.1016/j.microc.2018.06.016http://doi.org/10.1016/j.microc.2018.06.016 .
Paloni, J. M.; Olsen, B. D. . Polymer domains control diffusion in protein-polymer conjugate biosensors . ACS Appl. Polym. Mater. , 2020 . 14 4481 -4492. .
Paloni, J. M.; Dong, X. H.; Olsen, B. D. . Protein–polymer block copolymer thin films for highly sensitive detection of small proteins in biological fluids . ACS Sensors , 2019 . 4 2869 -2878 . DOI:10.1021/acssensors.9b01020http://doi.org/10.1021/acssensors.9b01020 .
Qi, F.; Qian, Y.; Shao, N.; Zhou, R.; Zhang, S.; Lu, Z.; Zhou, M.; Xie, J.; Wei, T.; Yu, Q. . Practical preparation of infection-resistant biomedical surfaces from antimicrobial β-peptide polymers . ACS Appl. Mater. Interface , 2019 . 11 18907 -18913 . DOI:10.1021/acsami.9b02915http://doi.org/10.1021/acsami.9b02915 .
Nishimura, T.; Shishi, S.; Sasaki, Y.; Akiyoshi, K. . Substrate-sorting nanoreactors based on permeable peptide polymer vesicles and hybrid liposomes with synthetic macromolecular channels . J. Am. Chem. Soc. , 2019 . 142 154 -161. .
0
浏览量
3
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构