1.Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
[ "Chao Gao received his Ph.D. degree from Shanghai Jiao Tong University (SJTU) in 2001. He was appointed as an Associate Professor at SJTU in 2002. He did postdoctoral research at the University of Sussex with Prof. Sir Harry Kroto and AvH research at the Bayreuth University with Prof. Axel H. E. Müller. He joined the Department of Polymer Science and Engineering, Zhejiang University, in 2008 and was promoted as a Qiushi Distinguished Professor in 2014. He leads a Nanopolymer group working on graphene chemistry, macroscopic assembly, and energy storage" ]
Scan for full text
Wen-Zhang Fang, Li Peng, Ying-Jun Liu, 等. A Review on Graphene Oxide Two-dimensional Macromolecules: from Single Molecules to Macro-assembly[J]. Chinese Journal of Polymer Science, 2021,39(3):267-308.
Wen-Zhang Fang, Li Peng, Ying-Jun Liu, et al. A Review on Graphene Oxide Two-dimensional Macromolecules: from Single Molecules to Macro-assembly[J]. Chinese Journal of Polymer Science, 2021,39(3):267-308.
Wen-Zhang Fang, Li Peng, Ying-Jun Liu, 等. A Review on Graphene Oxide Two-dimensional Macromolecules: from Single Molecules to Macro-assembly[J]. Chinese Journal of Polymer Science, 2021,39(3):267-308. DOI: 10.1007/s10118-021-2515-1.
Wen-Zhang Fang, Li Peng, Ying-Jun Liu, et al. A Review on Graphene Oxide Two-dimensional Macromolecules: from Single Molecules to Macro-assembly[J]. Chinese Journal of Polymer Science, 2021,39(3):267-308. DOI: 10.1007/s10118-021-2515-1.
Graphene oxide (GO), which consists of two-dimensional (2D) sp,2, carbon hexagonal networks and oxygen-contained functional groups, has laid the foundation of mass production and applications of graphene materials. Made by chemical oxidation of graphite, GO is highly dispersible or even solubilized in water and polar organic solvents, which resolves the hard problem of graphene processing and opens a door to wet-processing of graphene. Despite its defects, GO is easy to functionalize, dope, punch holes, cut into pieces, conduct chemical reduction, form lyotropic liquid crystal, and assemble into macroscopic materials with tunable structures and properties as a living building block. GO sheet has been viewed as a single molecule, a particle, as well as a soft polymer material. An overview on GO as a 2D macromolecule is essential for studying its intrinsic properties and guiding the development of relevant subjects. This review mainly focuses on recent advances of GO sheets, from single macromolecular behavior to macro-assembled graphene material properties. The first part of this review offers a brief introduction to the synthesis of GO molecules. Then the chemical structure and physical properties of GO are presented, as well as its polarity in solvent and rheology behavior. Several key parameters governing the ultimate stability of GO colloidal behavior, including size, pH and the presence of cation in aqueous dispersions, are highlighted. Furthermore, the discovery of GO liquid crystal and functionalization of GO molecules have built solid new foundations of preparing highly ordered, architecture-tunable, macro-assembled graphene materials, including 1D graphene fibers, 2D graphene films, and 3D graphene architectures. The GO-based composites are also viewed and the interactions between these target materials and GO are carefully discussed. Finally, an outlook is provided in this field, where GO is regarded as macromolecules, pointing out the challenges and opportunities that exist in the field. We hope that this review will be beneficial to the understanding of GO in terms of chemical structure, molecular properties, macro-assembly and potential applications, and encourage further development to extend its investigations from basic research to practical applications.
Graphene2D macromoleculesMacro-assembly
Xu, Z.; Gao, C. . Graphene in macroscopic order: liquid crystals and wet-spun fibers . Acc. Chem. Res. , 2014 . 47 1267 -1276 . DOI:10.1021/ar4002813http://doi.org/10.1021/ar4002813 .
Dai, L. . Functionalization of graphene for efficient energy conversion and storage . Acc. Chem. Res. , 2013 . 46 31 -42 . DOI:10.1021/ar300122mhttp://doi.org/10.1021/ar300122m .
Radha, B.; Esfandiar, A.; Wang, F. C.; Rooney, A. P.; Gopinadhan, K.; Keerthi, A.; Mishchenko, A.; Janardanan, A.; Blake, P.; Fumagalli, L.; Lozada-Hidalgo, M.; Garaj, S.; Haigh, S. J.; Grigorieva, I. V.; Wu, H. A.; Geim, A. K. . Molecular transport through capillaries made with atomic-scale precision . Nature , 2016 . 538 222 -225 . DOI:10.1038/nature19363http://doi.org/10.1038/nature19363 .
Lozada-Hidalgo, M.; Zhang, S.; Hu, S.; Kravets, V. G.; Rodriguez, F. J.; Berdyugin, A.; Grigorenko, A.; Geim, A. K. . Giant photoeffect in proton transport through graphene membranes . Nat. Nanotechnol. , 2018 . 13 300 -303 . DOI:10.1038/s41565-017-0051-5http://doi.org/10.1038/s41565-017-0051-5 .
Nedoliuk, I. O.; Hu, S.; Geim, A. K.; Kuzmenko, A. B. . Colossal infrared and terahertz magneto-optical activity in a two-dimensional Dirac material . Nat. Nanotechnol. , 2019 . 14 756 -761 . DOI:10.1038/s41565-019-0489-8http://doi.org/10.1038/s41565-019-0489-8 .
Geim, A. K.; Novoselov, K. S. . The rise of graphene . Nat. Mater. , 2007 . 6 183 -191 . DOI:10.1038/nmat1849http://doi.org/10.1038/nmat1849 .
Khan, M. B.; Parvaz, M.; Khan, Z. H., Graphene oxide: synthesis and characterization. In Recent trends in nanomaterials: synthesis and properties. Khan, Z. H. Ed., Springer Singapore, Singapore, 2017, pp. 1−28.
Hummers, W. S.; Offeman, R. E. . Preparation of graphitic oxide . J. Am. Chem. Soc. , 1958 . 80 1339 -1339 . DOI:10.1021/ja01539a017http://doi.org/10.1021/ja01539a017 .
Xu, Z.; Gao, C. . Aqueous liquid crystals of graphene oxide . ACS Nano , 2011 . 5 2908 -2915 . DOI:10.1021/nn200069whttp://doi.org/10.1021/nn200069w .
Kim, J. E.; Han, T. H.; Lee, S. H.; Kim, J. Y.; Ahn, C. W.; Yun, J. M.; Kim, S. O. . Graphene oxide liquid crystals . Angew. Chem. Int. Ed. , 2011 . 50 3043 -3047 . DOI:10.1002/anie.201004692http://doi.org/10.1002/anie.201004692 .
McAllister, M. J.; Li, J. L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud'homme, R. K.; Aksay, I. A. . Single sheet functionalized graphene by oxidation and thermal expansion of graphite . Chem. Mater. , 2007 . 19 4396 -4404 . DOI:10.1021/cm0630800http://doi.org/10.1021/cm0630800 .
Brodie, B. C. . XXIII. Researches on the atomic weight of graphite . Q. J. Chem. Soc. , 1860 . 12 261 -268 . DOI:10.1039/QJ8601200261http://doi.org/10.1039/QJ8601200261 .
Staudenmaier, L. . Verfahren zur darstellung der graphitsäure . Ber. Dtsch. Chem. Ges. , 1898 . 31 1481 -1487 . DOI:10.1002/cber.18980310237http://doi.org/10.1002/cber.18980310237 .
Chen, J.; Yao, B.; Li, C.; Shi, G. . An improved Hummers method for eco-friendly synthesis of graphene oxide . Carbon , 2013 . 64 225 -229 . DOI:10.1016/j.carbon.2013.07.055http://doi.org/10.1016/j.carbon.2013.07.055 .
Shen, J.; Hu, Y.; Shi, M.; Lu, X.; Qin, C.; Li, C.; Ye, M. . Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets . Chem. Mater. , 2009 . 21 3514 -3520 . DOI:10.1021/cm901247thttp://doi.org/10.1021/cm901247t .
Chen, J.; Li, Y.; Huang, L.; Li, C.; Shi, G. . High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process . Carbon , 2015 . 81 826 -834 . DOI:10.1016/j.carbon.2014.10.033http://doi.org/10.1016/j.carbon.2014.10.033 .
Abdelkader, A. M.; Kinloch, I. A.; Dryfe, R. A. W. . High-yield electro-oxidative preparation of graphene oxide . Chem. Commun. , 2014 . 50 8402 -8404 . DOI:10.1039/C4CC03260Hhttp://doi.org/10.1039/C4CC03260H .
Huang, H.; Peng, L.; Fang, W.; Cai, S.; Chu, X.; Liu, Y.; Gao, W.; Xu, Z.; Gao, C. . A polyimide-pyrolyzed carbon waste approach for the scalable and controlled electrochemical preparation of size-tunable graphene . Nanoscale , 2020 . 12 11971 -11978 . DOI:10.1039/D0NR00725Khttp://doi.org/10.1039/D0NR00725K .
Posudievsky, O. Y.; Khazieieva, O. A.; Koshechko, V. G.; Pokhodenko, V. D. . Preparation of graphene oxide by solvent-free mechanochemical oxidation of graphite . J. Mater. Chem. , 2012 . 22 12465 -12467 . DOI:10.1039/c2jm16073khttp://doi.org/10.1039/c2jm16073k .
Dash, P.; Dash, T.; Rout, T. K.; Sahu, A. K.; Biswal, S. K.; Mishra, B. K. . Preparation of graphene oxide by dry planetary ball milling process from natural graphite . RSC Adv. , 2016 . 6 12657 -12668 . DOI:10.1039/C5RA26491Jhttp://doi.org/10.1039/C5RA26491J .
Xu, Z.; Sun, H.; Zhao, X.; Gao, C. . Ultrastrong fibers assembled from giant graphene oxide sheets . Adv. Mater. , 2013 . 25 188 -193 . DOI:10.1002/adma.201203448http://doi.org/10.1002/adma.201203448 .
Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H. . Pegylated nanographene oxide for delivery of water-insoluble cancer drugs . J. Am. Chem. Soc. , 2008 . 130 10876 -10877 . DOI:10.1021/ja803688xhttp://doi.org/10.1021/ja803688x .
Wang, X.; Bai, H.; Shi, G. . Size fractionation of graphene oxide sheets by pH-assisted selective sedimentation . J. Am. Chem. Soc. , 2011 . 133 6338 -6342 . DOI:10.1021/ja200218yhttp://doi.org/10.1021/ja200218y .
Zhao, J.; Pei, S.; Ren, W.; Gao, L.; Cheng, H. M. . Efficient preparation of large-area graphene oxide sheets for transparent conductive films . ACS Nano , 2010 . 4 5245 -5252 . DOI:10.1021/nn1015506http://doi.org/10.1021/nn1015506 .
Pan, S.; Aksay, I. A. . Factors controlling the size of graphene oxide sheets produced via the graphite oxide route . ACS Nano , 2011 . 5 4073 -4083 . DOI:10.1021/nn200666rhttp://doi.org/10.1021/nn200666r .
Li, J. L.; Kudin, K. N.; McAllister, M. J.; Prud’homme, R. K.; Aksay, I. A.; Car, R. . Oxygen-driven unzipping of graphitic materials . Phys. Rev. Lett. , 2006 . 96 176101 DOI:10.1103/PhysRevLett.96.176101http://doi.org/10.1103/PhysRevLett.96.176101 .
Dong, L.; Chen, Z.; Lin, S.; Wang, K.; Ma, C.; Lu, H. . Reactivity-controlled preparation of ultralarge graphene oxide by chemical expansion of graphite . Chem. Mater. , 2017 . 29 564 -572 . DOI:10.1021/acs.chemmater.6b03748http://doi.org/10.1021/acs.chemmater.6b03748 .
Su, C. Y.; Xu, Y.; Zhang, W.; Zhao, J.; Tang, X.; Tsai, C. H.; Li, L. J. . Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers . Chem. Mater. , 2009 . 21 5674 -5680 . DOI:10.1021/cm902182yhttp://doi.org/10.1021/cm902182y .
Qi, X.; Zhou, T.; Deng, S.; Zong, G.; Yao, X.; Fu, Q. . Size-specified graphene oxide sheets: ultrasonication assisted preparation and characterization . J. Mater. Sci. , 2014 . 49 1785 -1793 . DOI:10.1007/s10853-013-7866-8http://doi.org/10.1007/s10853-013-7866-8 .
Chen, J.; Zhang, X.; Zheng, X.; Liu, C.; Cui, X.; Zheng, W. . Size distribution-controlled preparation of graphene oxide nanosheets with different C/O ratios . Mater. Chem. Phys. , 2013 . 139 8 -11 . DOI:10.1016/j.matchemphys.2012.12.025http://doi.org/10.1016/j.matchemphys.2012.12.025 .
Khan, U.; O’Neill, A.; Porwal, H.; May, P.; Nawaz, K.; Coleman, J. N. . Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation . Carbon , 2012 . 50 470 -475 . DOI:10.1016/j.carbon.2011.09.001http://doi.org/10.1016/j.carbon.2011.09.001 .
Xu, X.; Liu, L.; Geng, H.; Wang, J.; Zhou, J.; Jiang, Y.; Doi, M. . Directional freezing of binary colloidal suspensions: a model for size fractionation of graphene oxide . Soft Matter , 2019 . 15 243 -251 . DOI:10.1039/C8SM01626Ghttp://doi.org/10.1039/C8SM01626G .
Geng, H.; Yao, B.; Zhou, J.; Liu, K.; Bai, G.; Li, W.; Song, Y.; Shi, G.; Doi, M.; Wang, J. . Size fractionation of graphene oxide nanosheets via controlled directional freezing . J. Am. Chem. Soc. , 2017 . 139 12517 -12523 . DOI:10.1021/jacs.7b05490http://doi.org/10.1021/jacs.7b05490 .
Chen, J.; Li, Y.; Huang, L.; Jia, N.; Li, C.; Shi, G. . Size fractionation of graphene oxide sheets via filtration through track-etched membranes . Adv. Mater. , 2015 . 27 3654 -3660 . DOI:10.1002/adma.201501271http://doi.org/10.1002/adma.201501271 .
Zhang, W.; Zou, X.; Li, H.; Hou, J.; Zhao, J.; Lan, J.; Feng, B.; Liu, S. . Size fractionation of graphene oxide sheets by the polar solvent-selective natural deposition method . RSC Adv. , 2015 . 5 146 -152 . DOI:10.1039/C4RA08516Ghttp://doi.org/10.1039/C4RA08516G .
Davardoostmanesh, M.; Goharshadi, E. K.; Ahmadzadeh, H. . Electrophoretic size fractionation of graphene oxide nanosheets . New J. Chem. , 2019 . 43 5047 -5054 . DOI:10.1039/C8NJ06411Chttp://doi.org/10.1039/C8NJ06411C .
Zhang, S.; Li, Y.; Sun, J.; Wang, J.; Qin, C.; Dai, L. . Size fractionation of graphene oxide sheets assisted by circular flow and their graphene aerogels with size-dependent adsorption . RSC Adv. , 2016 . 6 74053 -74060 . DOI:10.1039/C6RA16363Ghttp://doi.org/10.1039/C6RA16363G .
Liu, F.; Jang, M. H.; Ha, H. D.; Kim, J. H.; Cho, Y. H.; Seo, T. S. . Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots: origin of blue and green luminescence . Adv. Mater. , 2013 . 25 3657 -3662 . DOI:10.1002/adma.201300233http://doi.org/10.1002/adma.201300233 .
Park, M.; Ha, H. D.; Kim, Y. T.; Jung, J. H.; Kim, S. H.; Kim, D. H.; Seo, T. S. . Combination of a sample pretreatment microfluidic device with a photoluminescent graphene oxide quantum dot sensor for trace lead detection . Anal. Chem. , 2015 . 87 10969 -10975 . DOI:10.1021/acs.analchem.5b02907http://doi.org/10.1021/acs.analchem.5b02907 .
Yeh, T. F.; Teng, C. Y.; Chen, S. J.; Teng, H. . Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination . Adv. Mater. , 2014 . 26 3297 -3303 . DOI:10.1002/adma.201305299http://doi.org/10.1002/adma.201305299 .
Erickson, K.; Erni, R.; Lee, Z.; Alem, N.; Gannett, W.; Zettl, A. . Determination of the local chemical structure of graphene oxide and reduced graphene oxide . Adv. Mater. , 2010 . 22 4467 -4472 . DOI:10.1002/adma.201000732http://doi.org/10.1002/adma.201000732 .
Chen, H.; Du, W.; Liu, J.; Qu, L.; Li, C. . Efficient room-temperature production of high-quality graphene by introducing removable oxygen functional groups to the precursor . Chem. Sci. , 2019 . 10 1244 -1253 . DOI:10.1039/C8SC03695Khttp://doi.org/10.1039/C8SC03695K .
Wang, X.; Jiao, L.; Sheng, K.; Li, C.; Dai, L.; Shi, G. . Solution-processable graphene nanomeshes with controlled pore structures . Sci. Rep. , 2013 . 3 1996 DOI:10.1038/srep01996http://doi.org/10.1038/srep01996 .
Zhou, S.; Kim, S.; Bongiorno, A. . Chemical structure of oxidized multilayer epitaxial graphene: a density functional theory study . J. Phys. Chem. C , 2013 . 117 6267 -6274 . DOI:10.1021/jp400128thttp://doi.org/10.1021/jp400128t .
Lee, V.; Dennis, R. V.; Schultz, B. J.; Jaye, C.; Fischer, D. A.; Banerjee, S. . Soft X-ray absorption spectroscopy studies of the electronic structure recovery of graphene oxide upon chemical defunctionalization . J. Phys. Chem. C , 2012 . 116 20591 -20599 . DOI:10.1021/jp306497fhttp://doi.org/10.1021/jp306497f .
Paredes, J. I.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J. M. D. . Graphene oxide dispersions in organic solvents . Langmuir , 2008 . 24 10560 -10564 . DOI:10.1021/la801744ahttp://doi.org/10.1021/la801744a .
Neklyudov, V. V.; Agieienko, V. N.; Ziganshin, M. A.; Dimiev, A. M. . On the solvation behavior of graphene oxide in ethylene glycol/water mixtures . ChemPhysChem , 2018 . 19 1344 -1348 . DOI:10.1002/cphc.201800042http://doi.org/10.1002/cphc.201800042 .
Kim, D. H.; Yun, Y. S.; Jin, H. J. . Difference of dispersion behavior between graphene oxide and oxidized carbon nanotubes in polar organic solvents . Curr. Appl. Phys. , 2012 . 12 637 -642 . DOI:10.1016/j.cap.2011.09.015http://doi.org/10.1016/j.cap.2011.09.015 .
Konios, D.; Stylianakis, M. M.; Stratakis, E.; Kymakis, E. . Dispersion behaviour of graphene oxide and reduced graphene oxide . J. Colloid Interf. Sci. , 2014 . 430 108 -112 . DOI:10.1016/j.jcis.2014.05.033http://doi.org/10.1016/j.jcis.2014.05.033 .
Park, S.; An, J.; Jung, I.; Piner, R. D.; An, S. J.; Li, X.; Velamakanni, A.; Ruoff, R. S. . Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents . Nano Lett. , 2009 . 9 1593 -1597 . DOI:10.1021/nl803798yhttp://doi.org/10.1021/nl803798y .
Neklyudov, V. V.; Khafizov, N. R.; Sedov, I. A.; Dimiev, A. M. . New insights into the solubility of graphene oxide in water and alcohols . Phys. Chem. Chem. Phys. , 2017 . 19 17000 -17008 . DOI:10.1039/C7CP02303Khttp://doi.org/10.1039/C7CP02303K .
Kim, J.; Cote, L. J.; Kim, F.; Yuan, W.; Shull, K. R.; Huang, J. . Graphene oxide sheets at interfaces . J. Am. Chem. Soc. , 2010 . 132 8180 -8186 . DOI:10.1021/ja102777phttp://doi.org/10.1021/ja102777p .
Luo, J.; Cote, L. J.; Tung, V. C.; Tan, A. T. L.; Goins, P. E.; Wu, J.; Huang, J. . Graphene oxide nanocolloids . J. Am. Chem. Soc. , 2010 . 132 17667 -17669 . DOI:10.1021/ja1078943http://doi.org/10.1021/ja1078943 .
Kim, F.; Cote, L. J.; Huang, J. . Graphene oxide: surface activity and two-dimensional assembly . Adv. Mater. , 2010 . 22 1954 -1958 . DOI:10.1002/adma.200903932http://doi.org/10.1002/adma.200903932 .
Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. . Processable aqueous dispersions of graphene nanosheets . Nat. Nanotechnol. , 2008 . 3 101 -105 . DOI:10.1038/nnano.2007.451http://doi.org/10.1038/nnano.2007.451 .
Bepete, G.; Anglaret, E.; Ortolani, L.; Morandi, V.; Huang, K.; Pénicaud, A.; Drummond, C. . Surfactant-free single-layer graphene in water . Nat. Chem. , 2017 . 9 347 -352 . DOI:10.1038/nchem.2669http://doi.org/10.1038/nchem.2669 .
Bai, G.; Gao, D.; Liu, Z.; Zhou, X.; Wang, J. . Probing the critical nucleus size for ice formation with graphene oxide nanosheets . Nature , 2019 . 576 437 -441 . DOI:10.1038/s41586-019-1827-6http://doi.org/10.1038/s41586-019-1827-6 .
Koltonow, A. R.; Luo, C.; Luo, J.; Huang, J. . Graphene oxide sheets in solvents: to crumple or not to crumple? . ACS Omega , 2017 . 2 8005 -8009 . DOI:10.1021/acsomega.7b01647http://doi.org/10.1021/acsomega.7b01647 .
Tang, B.; Yun, X.; Xiong, Z.; Wang, X. . Formation of graphene oxide nanoscrolls in organic solvents: toward scalable device fabrication . ACS Appl. Nano Mater. , 2018 . 1 686 -697 . DOI:10.1021/acsanm.7b00160http://doi.org/10.1021/acsanm.7b00160 .
Tang, B.; Xiong, Z.; Yun, X.; Wang, X. . Rolling up graphene oxide sheets through solvent-induced self-assembly in dispersions . Nanoscale , 2018 . 10 4113 -4122 . DOI:10.1039/C7NR08415Chttp://doi.org/10.1039/C7NR08415C .
Tang, B.; Gao, E.; Xiong, Z.; Dang, B.; Xu, Z.; Wang, X. . Transition of graphene oxide from nanomembrane to nanoscroll mediated by organic solvent in dispersion . Chem. Mater. , 2018 . 30 5951 -5960 . DOI:10.1021/acs.chemmater.8b02083http://doi.org/10.1021/acs.chemmater.8b02083 .
Chen, C.; Xu, Z.; Han, Y.; Sun, H.; Gao, C. . Redissolution of flower-shaped graphene oxide powder with high density . ACS Appl. Mater. Interfaces , 2016 . 8 8000 -8007 . DOI:10.1021/acsami.6b00126http://doi.org/10.1021/acsami.6b00126 .
Zhang, M.; Wang, Y.; Huang, L.; Xu, Z.; Li, C.; Shi, G. . Multifunctional pristine chemically modified graphene films as strong as stainless steel . Adv. Mater. , 2015 . 27 6708 -6713 . DOI:10.1002/adma.201503045http://doi.org/10.1002/adma.201503045 .
Deng, S.; Berry, V. . Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications . Mater. Today , 2016 . 19 197 -212 . DOI:10.1016/j.mattod.2015.10.002http://doi.org/10.1016/j.mattod.2015.10.002 .
Ma, X.; Zachariah, M. R.; Zangmeister, C. D. . Crumpled nanopaper from graphene oxide . Nano Lett. , 2012 . 12 486 -489 . DOI:10.1021/nl203964zhttp://doi.org/10.1021/nl203964z .
Lee, W. K.; Kang, J.; Chen, K. S.; Engel, C. J.; Jung, W. B.; Rhee, D.; Hersam, M. C.; Odom, T. W. . Multiscale, hierarchical patterning of graphene by conformal wrinkling . Nano Lett. , 2016 . 16 7121 -7127 . DOI:10.1021/acs.nanolett.6b03415http://doi.org/10.1021/acs.nanolett.6b03415 .
Xiao, Y.; Xu, Z.; Liu, Y.; Peng, L.; Xi, J.; Fang, B.; Guo, F.; Li, P.; Gao, C. . Sheet collapsing approach for rubber-like graphene papers . ACS Nano , 2017 . 11 8092 -8102 . DOI:10.1021/acsnano.7b02915http://doi.org/10.1021/acsnano.7b02915 .
Abraham, F. F.; Kardar, M. . Folding and unbinding transitions in tethered membranes . Science , 1991 . 252 419 DOI:10.1126/science.252.5004.419http://doi.org/10.1126/science.252.5004.419 .
Wen, X.; Garland, C. W.; Hwa, T.; Kardar, M.; Kokufuta, E.; Li, Y.; Orkisz, M.; Tanaka, T. . Crumpled and collapsed conformation in graphite oxide membranes . Nature , 1992 . 355 426 -428 . DOI:10.1038/355426a0http://doi.org/10.1038/355426a0 .
Bowick, M.; Falcioni, M.; Thorleifsson, G. . Numerical observation of a tubular phase in anisotropic membranes . Phys. Rev. Lett. , 1997 . 79 885 -888 . DOI:10.1103/PhysRevLett.79.885http://doi.org/10.1103/PhysRevLett.79.885 .
Wang, Y.; Wang, S. J.; Li, P.; Rajendran, S.; Xu, Z.; Liu, S. P.; Guo, F.; He, Y. H.; Li, Z. S.; Xu, Z. P.; Gao, C. . Conformational phase map of two-dimensional macromolecular graphene oxide in solution . Matter , 2020 . 3 230 -245 . DOI:10.1016/j.matt.2020.04.023http://doi.org/10.1016/j.matt.2020.04.023 .
Shih, C. J.; Lin, S.; Sharma, R.; Strano, M. S.; Blankschtein, D. . Understanding the pH-dependent behavior of graphene oxide aqueous solutions: a comparative experimental and molecular dynamics simulation study . Langmuir , 2012 . 28 235 -241 . DOI:10.1021/la203607whttp://doi.org/10.1021/la203607w .
Wu, L.; Liu, L.; Gao, B.; Muñoz-Carpena, R.; Zhang, M.; Chen, H.; Zhou, Z.; Wang, H. . Aggregation kinetics of graphene oxides in aqueous solutions: experiments, mechanisms, and modeling . Langmuir , 2013 . 29 15174 -15181 . DOI:10.1021/la404134xhttp://doi.org/10.1021/la404134x .
Chowdhury, I.; Duch, M. C.; Mansukhani, N. D.; Hersam, M. C.; Bouchard, D. . Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment . Environ. Sci. Technol. , 2013 . 47 6288 -6296 . DOI:10.1021/es400483khttp://doi.org/10.1021/es400483k .
Yang, K.; Chen, B.; Zhu, X.; Xing, B. . Aggregation, adsorption, and morphological transformation of graphene oxide in aqueous solutions containing different metal cations . Environ. Sci. Technol. , 2016 . 50 11066 -11075 . DOI:10.1021/acs.est.6b04235http://doi.org/10.1021/acs.est.6b04235 .
Gudarzi, M. M. . Colloidal stability of graphene oxide: aggregation in two dimensions . Langmuir , 2016 . 32 5058 -5068 . DOI:10.1021/acs.langmuir.6b01012http://doi.org/10.1021/acs.langmuir.6b01012 .
Yeh, C. N.; Raidongia, K.; Shao, J.; Yang, Q. H.; Huang, J. . On the origin of the stability of graphene oxide membranes in water . Nat. Chem. , 2015 . 7 166 -170 . DOI:10.1038/nchem.2145http://doi.org/10.1038/nchem.2145 .
Guo, F.; Jiang, Y.; Xu, Z.; Xiao, Y.; Fang, B.; Liu, Y.; Gao, W.; Zhao, P.; Wang, H.; Gao, C. . Highly stretchable carbon aerogels . Nat. Commun. , 2018 . 9 881 DOI:10.1038/s41467-018-03268-yhttp://doi.org/10.1038/s41467-018-03268-y .
He, Y.; Liu, Y.; Guo, F.; Pang, K.; Fang, B.; Wang, Y.; Chang, D.; Xu, Z.; Gao, C. . Dynamic dispersion stability of graphene oxide with metal ions . Chin. Chem. Lett. , 2020 . 31 1625 -1629 . DOI:10.1016/j.cclet.2019.10.010http://doi.org/10.1016/j.cclet.2019.10.010 .
Del, Giudice F.; Shen, A. Q. . Shear rheology of graphene oxide dispersions . Curr. Opin. Chem. Eng. , 2017 . 16 23 -30 . DOI:10.1016/j.coche.2017.04.003http://doi.org/10.1016/j.coche.2017.04.003 .
Naficy, S.; Jalili, R.; Aboutalebi, S. H.; Gorkin Iii, R. A.; Konstantinov, K.; Innis, P. C.; Spinks, G. M.; Poulin, P.; Wallace, G. G. . Graphene oxide dispersions: tuning rheology to enable fabrication . Mater. Horiz. , 2014 . 1 326 -331 . DOI:10.1039/C3MH00144Jhttp://doi.org/10.1039/C3MH00144J .
Tesfai, W.; Singh, P.; Shatilla, Y.; Iqbal, M. Z.; Abdala, A. A. . Rheology and microstructure of dilute graphene oxide suspension . J. Nanopart. Res. , 2013 . 15 1989 DOI:10.1007/s11051-013-1989-3http://doi.org/10.1007/s11051-013-1989-3 .
Vallés, C.; Young, R. J.; Lomax, D. J.; Kinloch, I. A. . The rheological behaviour of concentrated dispersions of graphene oxide . J. Mater. Sci. , 2014 . 49 6311 -6320 . DOI:10.1007/s10853-014-8356-3http://doi.org/10.1007/s10853-014-8356-3 .
Jiang, Y.; Xu, Z.; Huang, T.; Liu, Y.; Guo, F.; Xi, J.; Gao, W.; Gao, C. . Direct 3D printing of ultralight graphene oxide aerogel microlattices . Adv. Funct. Mater. , 2018 . 28 1707024 DOI:10.1002/adfm.201707024http://doi.org/10.1002/adfm.201707024 .
Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. . Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide . Carbon , 2007 . 45 1558 -1565 . DOI:10.1016/j.carbon.2007.02.034http://doi.org/10.1016/j.carbon.2007.02.034 .
Fan, X.; Peng, W.; Li, Y.; Li, X.; Wang, S.; Zhang, G.; Zhang, F. . Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation . Adv. Mater. , 2008 . 20 4490 -4493 . DOI:10.1002/adma.200801306http://doi.org/10.1002/adma.200801306 .
Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. . Evaluation of solution-processed reduced graphene oxide films as transparent conductors . ACS Nano , 2008 . 2 463 -470 . DOI:10.1021/nn700375nhttp://doi.org/10.1021/nn700375n .
Pei, S.; Zhao, J.; Du, J.; Ren, W.; Cheng, H. M. . Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids . Carbon , 2010 . 48 4466 -4474 . DOI:10.1016/j.carbon.2010.08.006http://doi.org/10.1016/j.carbon.2010.08.006 .
Haubner, K.; Murawski, J.; Olk, P.; Eng, L. M.; Ziegler, C.; Adolphi, B.; Jaehne, E. . The route to functional graphene oxide . ChemPhysChem , 2010 . 11 2131 -2139 . DOI:10.1002/cphc.201000132http://doi.org/10.1002/cphc.201000132 .
Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A.; Ruoff, R. S. . Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy . Carbon , 2009 . 47 145 -152 . DOI:10.1016/j.carbon.2008.09.045http://doi.org/10.1016/j.carbon.2008.09.045 .
Wu, J. B.; Lin, M. L.; Cong, X.; Liu, H. N.; Tan, P. H. . Raman spectroscopy of graphene-based materials and its applications in related devices . Chem. Soc. Rev. , 2018 . 47 1822 -1873 . DOI:10.1039/C6CS00915Hhttp://doi.org/10.1039/C6CS00915H .
Balandin, A. A. . Thermal properties of graphene and nanostructured carbon materials . Nat. Mater. , 2011 . 10 569 -581 . DOI:10.1038/nmat3064http://doi.org/10.1038/nmat3064 .
Song, N. J.; Chen, C. M.; Lu, C.; Liu, Z.; Kong, Q. Q.; Cai, R. . Thermally reduced graphene oxide films as flexible lateral heat spreaders . J. Mater. Chem. A , 2014 . 2 16563 -16568 . DOI:10.1039/C4TA02693Dhttp://doi.org/10.1039/C4TA02693D .
Xin, G.; Yao, T.; Sun, H.; Scott, S. M.; Shao, D.; Wang, G.; Lian, J. . Highly thermally conductive and mechanically strong graphene fibers . Science , 2015 . 349 1083 -1087 . DOI:10.1126/science.aaa6502http://doi.org/10.1126/science.aaa6502 .
Peng, L.; Xu, Z.; Liu, Z.; Guo, Y.; Li, P.; Gao, C. . Ultrahigh thermal conductive yet superflexible graphene films . Adv. Mater. , 2017 . 29 1700589 DOI:10.1002/adma.201700589http://doi.org/10.1002/adma.201700589 .
Williams, G.; Seger, B.; Kamat, P. V. . TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide . ACS Nano , 2008 . 2 1487 -1491 . DOI:10.1021/nn800251fhttp://doi.org/10.1021/nn800251f .
Williams, G.; Kamat, P. V. . Graphene-semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide . Langmuir , 2009 . 25 13869 -13873 . DOI:10.1021/la900905hhttp://doi.org/10.1021/la900905h .
Ng, Y. H.; Iwase, A.; Kudo, A.; Amal, R. . Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting . J. Phys. Chem. Lett. , 2010 . 1 2607 -2612 . DOI:10.1021/jz100978uhttp://doi.org/10.1021/jz100978u .
Liu, Y.; Li, P.; Wang, F.; Fang, W.; Xu, Z.; Gao, W.; Gao, C. . Rapid roll-to-roll production of graphene films using intensive Joule heating . Carbon , 2019 . 155 462 -468 . DOI:10.1016/j.carbon.2019.09.021http://doi.org/10.1016/j.carbon.2019.09.021 .
Zhang, Y.; Guo, L.; Wei, S.; He, Y.; Xia, H.; Chen, Q.; Sun, H. B.; Xiao, F. S. . Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction . Nano Today , 2010 . 5 15 -20 . DOI:10.1016/j.nantod.2009.12.009http://doi.org/10.1016/j.nantod.2009.12.009 .
Voiry, D.; Yang, J.; Kupferberg, J.; Fullon, R.; Lee, C.; Jeong, H. Y.; Shin, H. S.; Chhowalla, M. . High-quality graphene via microwave reduction of solution-exfoliated graphene oxide . Science , 2016 . 353 1413 DOI:10.1126/science.aah3398http://doi.org/10.1126/science.aah3398 .
Chen, Y.; Fu, K.; Zhu, S.; Luo, W.; Wang, Y.; Li, Y.; Hitz, E.; Yao, Y.; Dai, J.; Wan, J.; Danner, V. A.; Li, T.; Hu, L. . Reduced graphene oxide films with ultrahigh conductivity as Li-ion battery current collectors . Nano Lett. , 2016 . 16 3616 -3623 . DOI:10.1021/acs.nanolett.6b00743http://doi.org/10.1021/acs.nanolett.6b00743 .
Wang, Z.; Zhou, X.; Zhang, J.; Boey, F.; Zhang, H. . Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase . J. Phys. Chem. C , 2009 . 113 14071 -14075 . DOI:10.1021/jp906348xhttp://doi.org/10.1021/jp906348x .
An, S. J.; Zhu, Y.; Lee, S. H.; Stoller, M. D.; Emilsson, T.; Park, S.; Velamakanni, A.; An, J.; Ruoff, R. S. . Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition . J. Phys. Chem. Lett. , 2010 . 1 1259 -1263 . DOI:10.1021/jz100080chttp://doi.org/10.1021/jz100080c .
Zhou, M.; Wang, Y.; Zhai, Y.; Zhai, J.; Ren, W.; Wang, F.; Dong, S. . Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films . Chem. Eur. J. , 2009 . 15 6116 -6120 . DOI:10.1002/chem.200900596http://doi.org/10.1002/chem.200900596 .
Johns, J. E.; Hersam, M. C. . Atomic covalent functionalization of graphene . Acc. Chem. Res. , 2013 . 46 77 -86 . DOI:10.1021/ar300143ehttp://doi.org/10.1021/ar300143e .
Li, X.; Wang, H.; Robinson, J. T.; Sanchez, H.; Diankov, G.; Dai, H. . Simultaneous nitrogen doping and reduction of graphene oxide . J. Am. Chem. Soc. , 2009 . 131 15939 -15944 . DOI:10.1021/ja907098fhttp://doi.org/10.1021/ja907098f .
Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao, W. J.; Wang, F. B.; Xia, X. H. . Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis . ACS Nano , 2011 . 5 4350 -4358 . DOI:10.1021/nn103584thttp://doi.org/10.1021/nn103584t .
Kumar, N. A.; Nolan, H.; McEvoy, N.; Rezvani, E.; Doyle, R. L.; Lyons, M. E. G.; Duesberg, G. S. . Plasma-assisted simultaneous reduction and nitrogen doping of graphene oxide nanosheets . J. Mater. Chem. A , 2013 . 1 4431 -4435 . DOI:10.1039/c3ta10337dhttp://doi.org/10.1039/c3ta10337d .
Zhang, H.; Kuila, T.; Kim, N. H.; Yu, D. S.; Lee, J. H. . Simultaneous reduction, exfoliation, and nitrogen doping of graphene oxide via a hydrothermal reaction for energy storage electrode materials . Carbon , 2014 . 69 66 -78 . DOI:10.1016/j.carbon.2013.11.059http://doi.org/10.1016/j.carbon.2013.11.059 .
Wang, X.; Wang, J.; Wang, D.; Dou, S.; Ma, Z.; Wu, J.; Tao, L.; Shen, A.; Ouyang, C.; Liu, Q.; Wang, S. . One-pot synthesis of nitrogen and sulfur co-doped graphene as efficient metal-free electrocatalysts for the oxygen reduction reaction . Chem. Commun. , 2014 . 50 4839 -4842 . DOI:10.1039/C4CC00440Jhttp://doi.org/10.1039/C4CC00440J .
Yu, Q.; Xu, J.; Wan, C.; Wu, C.; Guan, L. . Porous cobalt-nitrogen-doped hollow graphene spheres as a superior electrocatalyst for enhanced oxygen reduction in both alkaline and acidic solutions . J. Mater. Chem. A , 2015 . 3 16419 -16423 . DOI:10.1039/C5TA04852Dhttp://doi.org/10.1039/C5TA04852D .
Xu, K.; Fu, Y.; Zhou, Y.; Hennersdorf, F.; Machata, P.; Vincon, I.; Weigand, J. J.; Popov, A. A.; Berger, R.; Feng, X. . Cationic nitrogen-doped helical nanographenes . Angew. Chem. Int. Ed. , 2017 . 56 15876 -15881 . DOI:10.1002/anie.201707714http://doi.org/10.1002/anie.201707714 .
Lee, S. H.; Kim, H. W.; Hwang, J. O.; Lee, W. J.; Kwon, J.; Bielawski, C. W.; Ruoff, R. S.; Kim, S. O. . Three-dimensional self-assembly of graphene oxide platelets into mechanically flexible macroporous carbon films . Angew. Chem. Int. Ed. , 2010 . 122 10282 -10286 . DOI:10.1002/ange.201006240http://doi.org/10.1002/ange.201006240 .
Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. . Detection of individual gas molecules adsorbed on graphene . Nat. Mater. , 2007 . 6 652 -655 . DOI:10.1038/nmat1967http://doi.org/10.1038/nmat1967 .
Melucci, M.; Treossi, E.; Ortolani, L.; Giambastiani, G.; Morandi, V.; Klar, P.; Casiraghi, C.; Samorì, P.; Palermo, V. . Facile covalent functionalization of graphene oxide using microwaves: bottom-up development of functional graphitic materials . J. Mater. Chem. , 2010 . 20 9052 -9060 . DOI:10.1039/c0jm01242dhttp://doi.org/10.1039/c0jm01242d .
Liu, H.; Xi, P.; Xie, G.; Shi, Y.; Hou, F.; Huang, L.; Chen, F.; Zeng, Z.; Shao, C.; Wang, J. . Simultaneous reduction and surface functionalization of graphene oxide for hydroxyapatite mineralization . J. Phys. Chem. C , 2012 . 116 3334 -3341 . DOI:10.1021/jp2102226http://doi.org/10.1021/jp2102226 .
Xue, Y.; Liu, Y.; Lu, F.; Qu, J.; Chen, H.; Dai, L. . Functionalization of graphene oxide with polyhedral oligomeric silsesquioxane (POSS) for multifunctional applications . J. Phys. Chem. Lett. , 2012 . 3 1607 -1612 . DOI:10.1021/jz3005877http://doi.org/10.1021/jz3005877 .
Kang, S. M.; Park, S.; Kim, D.; Park, S. Y.; Ruoff, R. S.; Lee, H. . Simultaneous reduction and surface functionalization of graphene oxide by mussel-inspired chemistry . Adv. Funct. Mater. , 2011 . 21 108 -112 . DOI:10.1002/adfm.201001692http://doi.org/10.1002/adfm.201001692 .
Lin, Y.; Jin, J.; Song, M. . Preparation and characterisation of covalent polymer functionalized graphene oxide . J. Mater. Chem. , 2011 . 21 3455 -3461 . DOI:10.1039/C0JM01859Ghttp://doi.org/10.1039/C0JM01859G .
Ou, J.; Wang, J.; Liu, S.; Mu, B.; Ren, J.; Wang, H.; Yang, S. . Tribology study of reduced graphene oxide sheets on silicon substrate synthesized via covalent assembly . Langmuir , 2010 . 26 15830 -15836 . DOI:10.1021/la102862dhttp://doi.org/10.1021/la102862d .
Sonin, A. S. . Inorganic lyotropic liquid crystals . J. Mater. Chem. , 1998 . 8 2557 -2574 . DOI:10.1039/a802666ahttp://doi.org/10.1039/a802666a .
Davidson, P.; Gabriel, J. C. P. . Mineral liquid crystals . Curr. Opin. Colloid Interface Sci. , 2005 . 9 377 -383 . DOI:10.1016/j.cocis.2004.12.001http://doi.org/10.1016/j.cocis.2004.12.001 .
Emerson, W. W. . Liquid crystals of montmorillonite . Nature , 1956 . 178 1248 -1249 . DOI:10.1038/1781248a0http://doi.org/10.1038/1781248a0 .
Thiele, H. . Viskosität und gelbildung der graphitsäure . Kolloid-Z. , 1948 . 111 15 -19 . DOI:10.1007/BF01522013http://doi.org/10.1007/BF01522013 .
Dan, B.; Behabtu, N.; Martinez, A.; Evans, J. S.; Kosynkin, D. V.; Tour, J. M.; Pasquali, M.; Smalyukh, I. I. . Liquid crystals of aqueous, giant graphene oxide flakes . Soft Matter , 2011 . 7 11154 -11159 . DOI:10.1039/c1sm06418ehttp://doi.org/10.1039/c1sm06418e .
Zamora-Ledezma, C.; Puech, N.; Zakri, C.; Grelet, E.; Moulton, S. E.; Wallace, G. G.; Gambhir, S.; Blanc, C.; Anglaret, E.; Poulin, P. . Liquid crystallinity and dimensions of surfactant-stabilized sheets of reduced graphene oxide . J. Phys. Chem. Lett. , 2012 . 3 2425 -2430 . DOI:10.1021/jz3008479http://doi.org/10.1021/jz3008479 .
Jalili, R.; Aboutalebi, S. H.; Esrafilzadeh, D.; Konstantinov, K.; Moulton, S. E.; Razal, J. M.; Wallace, G. G. . Organic solvent-based graphene oxide liquid crystals: a facile route toward the next generation of self-assembled layer-by-layer multifunctional 3D architectures . ACS Nano , 2013 . 7 3981 -3990 . DOI:10.1021/nn305906zhttp://doi.org/10.1021/nn305906z .
Gudarzi, M. M.; Moghadam, M. H. M.; Sharif, F. . Spontaneous exfoliation of graphite oxide in polar aprotic solvents as the route to produce graphene oxide-organic solvents liquid crystals . Carbon , 2013 . 64 403 -415 . DOI:10.1016/j.carbon.2013.07.093http://doi.org/10.1016/j.carbon.2013.07.093 .
Onsager, L. . The effects of shape on the interaction of colloidal particles . Ann. N. Y. Acad. Sci. , 1949 . 51 627 -659 . DOI:10.1111/j.1749-6632.1949.tb27296.xhttp://doi.org/10.1111/j.1749-6632.1949.tb27296.x .
Aboutalebi, S. H.; Gudarzi, M. M.; Zheng, Q. B.; Kim, J. K. . Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions . Adv. Funct. Mater. , 2011 . 21 2978 -2988 . DOI:10.1002/adfm.201100448http://doi.org/10.1002/adfm.201100448 .
Kumar, P.; Maiti, U. N.; Lee, K. E.; Kim, S. O. . Rheological properties of graphene oxide liquid crystal . Carbon , 2014 . 80 453 -461 . DOI:10.1016/j.carbon.2014.08.085http://doi.org/10.1016/j.carbon.2014.08.085 .
Xu, Z.; Gao, C. . Graphene chiral liquid crystals and macroscopic assembled fibres . Nat. Commun. , 2011 . 2 571 DOI:10.1038/ncomms1583http://doi.org/10.1038/ncomms1583 .
Jiang, Y.; Guo, F.; Xu, Z.; Gao, W.; Gao, C. . Artificial colloidal liquid metacrystals by shearing microlithography . Nat. Commun. , 2019 . 10 4111 DOI:10.1038/s41467-019-11941-zhttp://doi.org/10.1038/s41467-019-11941-z .
Liu, Z.; Xu, Z.; Hu, X.; Gao, C. . Lyotropic liquid crystal of polyacrylonitrile-grafted graphene oxide and its assembled continuous strong nacre-mimetic fibers . Macromolecules , 2013 . 46 6931 -6941 . DOI:10.1021/ma400681vhttp://doi.org/10.1021/ma400681v .
Yao, B.; Chen, J.; Huang, L.; Zhou, Q.; Shi, G. . Base-induced liquid crystals of graphene oxide for preparing elastic graphene foams with long-range ordered microstructures . Adv. Mater. , 2016 . 28 1623 -1629 . DOI:10.1002/adma.201504594http://doi.org/10.1002/adma.201504594 .
Shen, T. Z.; Hong, S. H.; Song, J. K. . Electro-optical switching of graphene oxide liquid crystals with an extremely large Kerr coefficient . Nat. Mater. , 2014 . 13 394 -399 . DOI:10.1038/nmat3888http://doi.org/10.1038/nmat3888 .
Wang, B.; Liu, J.; Zhao, Y.; Li, Y.; Xian, W.; Amjadipour, M.; MacLeod, J.; Motta, N. . Role of graphene oxide liquid crystals in hydrothermal reduction and supercapacitor performance . ACS Appl. Mater. Interfaces , 2016 . 8 22316 -22323 . DOI:10.1021/acsami.6b05779http://doi.org/10.1021/acsami.6b05779 .
Guo, F.; Kim, F.; Han, T. H.; Shenoy, V. B.; Huang, J.; Hurt, R. H. . Hydration-responsive folding and unfolding in graphene oxide liquid crystal phases . ACS Nano , 2011 . 5 8019 -8025 . DOI:10.1021/nn2025644http://doi.org/10.1021/nn2025644 .
Park, H.; Lee, K. H.; Kim, Y. B.; Ambade, S. B.; Noh, S. H.; Eom, W.; Hwang, J. Y.; Lee, W. J.; Huang, J.; Han, T. H. . Dynamic assembly of liquid crystalline graphene oxide gel fibers for ion transport . Sci. Adv. , 2018 . 4 eaau2104 DOI:10.1126/sciadv.aau2104http://doi.org/10.1126/sciadv.aau2104 .
Hu, X.; Xu, Z.; Liu, Z.; Gao, C. . Liquid crystal self-templating approach to ultrastrong and tough biomimic composites . Sci. Rep. , 2013 . 3 2374 DOI:10.1038/srep02374http://doi.org/10.1038/srep02374 .
Akbari, A.; Sheath, P.; Martin, S. T.; Shinde, D. B.; Shaibani, M.; Banerjee, P. C.; Tkacz, R.; Bhattacharyya, D.; Majumder, M. . Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide . Nat. Commun. , 2016 . 7 10891 DOI:10.1038/ncomms10891http://doi.org/10.1038/ncomms10891 .
Zakri, C.; Blanc, C.; Grelet, E.; Zamora-Ledezma, C.; Puech, N.; Anglaret, E.; Poulin, P. . Liquid crystals of carbon nanotubes and graphene . Philos. Trans. R. Soc. A , 2013 . 371 20120499 DOI:10.1098/rsta.2012.0499http://doi.org/10.1098/rsta.2012.0499 .
Yang, Q.; Xu, Z.; Gao, C. . Graphene fiber based supercapacitors: strategies and perspective toward high performances . J. Energy Chem. , 2018 . 27 6 -11 . DOI:10.1016/j.jechem.2017.10.023http://doi.org/10.1016/j.jechem.2017.10.023 .
Fang, B.; Chang, D.; Xu, Z.; Gao, C. . A review on graphene fibers: expectations, advances, and prospects . Adv. Mater. , 2020 . 32 1902664 DOI:10.1002/adma.201902664http://doi.org/10.1002/adma.201902664 .
Liu, Y.; Xu, Z.; Gao, W.; Cheng, Z.; Gao, C. . Graphene and other 2D colloids: liquid crystals and macroscopic fibers . Adv. Mater. , 2017 . 29 1606794 DOI:10.1002/adma.201606794http://doi.org/10.1002/adma.201606794 .
Dong, Z.; Jiang, C.; Cheng, H.; Zhao, Y.; Shi, G.; Jiang, L.; Qu, L. . Facile fabrication of light, flexible and multifunctional graphene fibers . Adv. Mater. , 2012 . 24 1856 -1861 . DOI:10.1002/adma.201200170http://doi.org/10.1002/adma.201200170 .
Xin, G.; Sun, H.; Hu, T.; Fard, H. R.; Sun, X.; Koratkar, N.; Borca-Tasciuc, T.; Lian, J. . Large-area freestanding graphene paper for superior thermal management . Adv. Mater. , 2014 . 26 4521 -4526 . DOI:10.1002/adma.201400951http://doi.org/10.1002/adma.201400951 .
Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. . Preparation and characterization of graphene oxide paper . Nature , 2007 . 448 457 DOI:10.1038/nature06016http://doi.org/10.1038/nature06016 .
Xu, Z.; Zhang, Y.; Li, P.; Gao, C. . Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores . ACS Nano , 2012 . 6 7103 -7113 . DOI:10.1021/nn3021772http://doi.org/10.1021/nn3021772 .
Xu, Z.; Liu, Y.; Zhao, X.; Peng, L.; Sun, H.; Xu, Y.; Ren, X.; Jin, C.; Xu, P.; Wang, M.; Gao, C. . Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering . Adv. Mater. , 2016 . 28 6449 -6456 . DOI:10.1002/adma.201506426http://doi.org/10.1002/adma.201506426 .
Li, P.; Liu, Y.; Shi, S.; Xu, Z.; Ma, W.; Wang, Z.; Liu, S.; Gao, C. . Highly crystalline graphene fibers with superior strength and conductivities by plasticization spinning . Adv. Funct. Mater. , 2020 . n/a 2006584 .
Park, S.; Lee, K. S.; Bozoklu, G.; Cai, W.; Nguyen, S. T.; Ruoff, R. S. . Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking . ACS Nano , 2008 . 2 572 -578 . DOI:10.1021/nn700349ahttp://doi.org/10.1021/nn700349a .
Ma, T.; Gao, H. L.; Cong, H. P.; Yao, H. B.; Wu, L.; Yu, Z. Y.; Chen, S. M.; Yu, S. H. . A bioinspired interface design for improving the strength and electrical conductivity of graphene-based fibers . Adv. Mater. , 2018 . 30 1706435 DOI:10.1002/adma.201706435http://doi.org/10.1002/adma.201706435 .
Kim, I. H.; Yun, T.; Kim, J. E.; Yu, H.; Sasikala, S. P.; Lee, K. E.; Koo, S. H.; Hwang, H.; Jung, H. J.; Park, J. Y.; Jeong, H. S.; Kim, S. O. . Mussel-inspired defect engineering of graphene liquid crystalline fibers for synergistic enhancement of mechanical strength and electrical conductivity . Adv. Mater. , 2018 . 30 1803267 DOI:10.1002/adma.201803267http://doi.org/10.1002/adma.201803267 .
Shin, M. K.; Lee, B.; Kim, S. H.; Lee, J. A.; Spinks, G. M.; Gambhir, S.; Wallace, G. G.; Kozlov, M. E.; Baughman, R. H.; Kim, S. J. . Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes . Nat. Commun. , 2012 . 3 650 DOI:10.1038/ncomms1661http://doi.org/10.1038/ncomms1661 .
Ni, H.; Xu, F.; Tomsia, A. P.; Saiz, E.; Jiang, L.; Cheng, Q. . Robust bioinspired graphene film via π-π cross-linking . ACS Appl. Mater. Interfaces , 2017 . 9 24987 -24992 . DOI:10.1021/acsami.7b07748http://doi.org/10.1021/acsami.7b07748 .
Zhang, X.; Guo, Y.; Liu, Y.; Li, Z.; Fang, W.; Peng, L.; Zhou, J.; Xu, Z.; Gao, C. . Ultrathick and highly thermally conductive graphene films by self-fusion . Carbon , 2020 . 167 249 -255 . DOI:10.1016/j.carbon.2020.05.051http://doi.org/10.1016/j.carbon.2020.05.051 .
Hicks, J.; Behnam, A.; Ural, A. . A computational study of tunneling-percolation electrical transport in graphene-based nanocomposites . Appl. Phys. Lett. , 2009 . 95 213103 DOI:10.1063/1.3267079http://doi.org/10.1063/1.3267079 .
Vaneski, A.; Susha, A. S.; Rodríguez-Fernández, J.; Berr, M.; Jäckel, F.; Feldmann, J.; Rogach, A. L. . Hybrid colloidal heterostructures of anisotropic semiconductor nanocrystals decorated with noble metals: synthesis and function . Adv. Funct. Mater. , 2011 . 21 1547 -1556 . DOI:10.1002/adfm.201002444http://doi.org/10.1002/adfm.201002444 .
Yu, D.; Goh, K.; Wang, H.; Wei, L.; Jiang, W.; Zhang, Q.; Dai, L.; Chen, Y. . Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage . Nat. Nanotechnol. , 2014 . 9 555 -562 . DOI:10.1038/nnano.2014.93http://doi.org/10.1038/nnano.2014.93 .
Wang, H.; Wang, C.; Jian, M.; Wang, Q.; Xia, K.; Yin, Z.; Zhang, M.; Liang, X.; Zhang, Y. . Superelastic wire-shaped supercapacitor sustaining 850% tensile strain based on carbon nanotube@graphene fiber . Nano Res. , 2018 . 11 2347 -2356 . DOI:10.1007/s12274-017-1782-1http://doi.org/10.1007/s12274-017-1782-1 .
Cai, S.; Huang, T.; Chen, H.; Salman, M.; Gopalsamy, K.; Gao, C. . Wet-spinning of ternary synergistic coaxial fibers for high performance yarn supercapacitors . J. Mater. Chem. A , 2017 . 5 22489 -22494 . DOI:10.1039/C7TA07937Khttp://doi.org/10.1039/C7TA07937K .
Choi, S. J.; Yu, H.; Jang, J. S.; Kim, M. H.; Kim, S. J.; Jeong, H. S.; Kim, I. D. . Nitrogen-doped single graphene fiber with platinum water dissociation catalyst for wearable humidity sensor . Small , 2018 . 14 1703934 DOI:10.1002/smll.201703934http://doi.org/10.1002/smll.201703934 .
Li, G.; Hong, G.; Dong, D.; Song, W.; Zhang, X. . Multiresponsive graphene-aerogel-directed phase-change smart fibers . Adv. Mater. , 2018 . 30 1801754 DOI:10.1002/adma.201801754http://doi.org/10.1002/adma.201801754 .
Zheng, X.; Zhang, K.; Yao, L.; Qiu, Y.; Wang, S. . Hierarchically porous sheath-core graphene-based fiber-shaped supercapacitors with high energy density . J. Mater. Chem. A , 2018 . 6 896 -907 . DOI:10.1039/C7TA08362Ahttp://doi.org/10.1039/C7TA08362A .
Meng, J.; Nie, W.; Zhang, K.; Xu, F.; Ding, X.; Wang, S.; Qiu, Y. . Enhancing electrochemical performance of graphene fiber-based supercapacitors by plasma treatment . ACS Appl. Mater. Interfaces , 2018 . 10 13652 -13659 . DOI:10.1021/acsami.8b04438http://doi.org/10.1021/acsami.8b04438 .
Chen, Z.; Ren, W.; Gao, L.; Liu, B.; Pei, S.; Cheng, H. M. . Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition . Nat. Mater. , 2011 . 10 424 -428 . DOI:10.1038/nmat3001http://doi.org/10.1038/nmat3001 .
Wu, G.; Tan, P.; Wu, X.; Peng, L.; Cheng, H.; Wang, C. F.; Chen, W.; Yu, Z.; Chen, S. . High-performance wearable micro-supercapacitors based on microfluidic-directed nitrogen-doped graphene fiber electrodes . Adv. Funct. Mater. , 2017 . 27 1702493 DOI:10.1002/adfm.201702493http://doi.org/10.1002/adfm.201702493 .
Zhang, Y.; Li, Y.; Ming, P.; Zhang, Q.; Liu, T.; Jiang, L.; Cheng, Q. . Ultrastrong bioinspired graphene-based fibers via synergistic toughening . Adv. Mater. , 2016 . 28 2834 -2839 . DOI:10.1002/adma.201506074http://doi.org/10.1002/adma.201506074 .
Qu, G.; Cheng, J.; Li, X.; Yuan, D.; Chen, P.; Chen, X.; Wang, B.; Peng, H. . A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode . Adv. Mater. , 2016 . 28 3646 -3652 . DOI:10.1002/adma.201600689http://doi.org/10.1002/adma.201600689 .
Lu, Z.; Foroughi, J.; Wang, C.; Long, H.; Wallace, G. G. . Superelastic hybrid CNT/graphene fibers for wearable energy storage . Adv. Energy Mater. , 2018 . 8 1702047 DOI:10.1002/aenm.201702047http://doi.org/10.1002/aenm.201702047 .
Kou, L.; Huang, T.; Zheng, B.; Han, Y.; Zhao, X.; Gopalsamy, K.; Sun, H.; Gao, C. . Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics . Nat. Commun. , 2014 . 5 3754 DOI:10.1038/ncomms4754http://doi.org/10.1038/ncomms4754 .
Meng, Y.; Zhao, Y.; Hu, C.; Cheng, H.; Hu, Y.; Zhang, Z.; Shi, G.; Qu, L. . All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles . Adv. Mater. , 2013 . 25 2326 -2331 . DOI:10.1002/adma.201300132http://doi.org/10.1002/adma.201300132 .
Chen, G.; Chen, T.; Hou, K.; Ma, W.; Tebyetekerwa, M.; Cheng, Y.; Weng, W.; Zhu, M. . Robust, hydrophilic graphene/cellulose nanocrystal fiber-based electrode with high capacitive performance and conductivity . Carbon , 2018 . 127 218 -227 . DOI:10.1016/j.carbon.2017.11.012http://doi.org/10.1016/j.carbon.2017.11.012 .
Wang, R.; Xu, Z.; Zhuang, J.; Liu, Z.; Peng, L.; Li, Z.; Liu, Y.; Gao, W.; Gao, C. . Highly stretchable graphene fibers with ultrafast electrothermal response for low-voltage wearable heaters . Adv. Electron. Mater. , 2017 . 3 1600425 DOI:10.1002/aelm.201600425http://doi.org/10.1002/aelm.201600425 .
Liu, Y.; Xu, Z.; Zhan, J.; Li, P.; Gao, C. . Superb electrically conductive graphene fibers via doping strategy . Adv. Mater. , 2016 . 28 7941 -7947 . DOI:10.1002/adma.201602444http://doi.org/10.1002/adma.201602444 .
Liu, Y.; Liang, H.; Xu, Z.; Xi, J.; Chen, G.; Gao, W.; Xue, M.; Gao, C. . Superconducting continuous graphene fibers via calcium intercalation . ACS Nano , 2017 . 11 4301 -4306 . DOI:10.1021/acsnano.7b01491http://doi.org/10.1021/acsnano.7b01491 .
Zhou, Q.; Zhang, M.; Chen, J.; Hong, J. D.; Shi, G. . Nitrogen-doped holey graphene film-based ultrafast electrochemical capacitors . ACS Appl. Mater. Interfaces , 2016 . 8 20741 -20747 . DOI:10.1021/acsami.6b05601http://doi.org/10.1021/acsami.6b05601 .
Yin, S.; Zhang, Y.; Kong, J.; Zou, C.; Li, C. M.; Lu, X.; Ma, J.; Boey, F. Y. C.; Chen, X. . Assembly of graphene sheets into hierarchical structures for high-performance energy storage . ACS Nano , 2011 . 5 3831 -3838 . DOI:10.1021/nn2001728http://doi.org/10.1021/nn2001728 .
Yang, X.; Cheng, C.; Wang, Y.; Qiu, L.; Li, D. . Liquid-mediated dense integration of graphene materials for compact capacitive energy storage . Science , 2013 . 341 534 DOI:10.1126/science.1239089http://doi.org/10.1126/science.1239089 .
Cai, S.; Bai, T.; Chen, H.; Fang, W.; Xu, Z.; Lai, H.; Huang, T.; Xu, H.; Chu, X.; Ling, J.; Gao, C. . Heavy water enables high-voltage aqueous electrochemistry via the deuterium isotope effect . J. Phys. Chem. Lett. , 2020 . 11 303 -310 . DOI:10.1021/acs.jpclett.9b03267http://doi.org/10.1021/acs.jpclett.9b03267 .
Zhang, L.; Ding, Y.; Zhang, C.; Zhou, Y.; Zhou, X.; Liu, Z.; Yu, G. . Enabling graphene-oxide-based membranes for large-scale energy storage by controlling hydrophilic microstructures . Chem , 2018 . 4 1035 -1046 . DOI:10.1016/j.chempr.2018.02.003http://doi.org/10.1016/j.chempr.2018.02.003 .
Dong, X.; Xu, H.; Chen, H.; Wang, L.; Wang, J.; Fang, W.; Chen, C.; Salman, M.; Xu, Z.; Gao, C. . Commercial expanded graphite as high-performance cathode for low-cost aluminum-ion battery . Carbon , 2019 . 148 134 -140 . DOI:10.1016/j.carbon.2019.03.080http://doi.org/10.1016/j.carbon.2019.03.080 .
Chen, H.; Xu, H.; Wang, S.; Huang, T.; Xi, J.; Cai, S.; Guo, F.; Xu, Z.; Gao, W.; Gao, C. . Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life . Sci. Adv. , 2017 . 3 eaao7233 DOI:10.1126/sciadv.aao7233http://doi.org/10.1126/sciadv.aao7233 .
Chen, H.; Guo, F.; Liu, Y.; Huang, T.; Zheng, B.; Ananth, N.; Xu, Z.; Gao, W.; Gao, C. . A defect-free principle for advanced graphene cathode of aluminum-ion battery . Adv. Mater. , 2017 . 29 1605958 DOI:10.1002/adma.201605958http://doi.org/10.1002/adma.201605958 .
Chen, L.; Shi, G.; Shen, J.; Peng, B.; Zhang, B.; Wang, Y.; Bian, F.; Wang, J.; Li, D.; Qian, Z.; Xu, G.; Liu, G.; Zeng, J.; Zhang, L.; Yang, Y.; Zhou, G.; Wu, M.; Jin, W.; Li, J.; Fang, H. . Ion sieving in graphene oxide membranes via cationic control of interlayer spacing . Nature , 2017 . 550 380 -383 . DOI:10.1038/nature24044http://doi.org/10.1038/nature24044 .
Yang, Q.; Su, Y.; Chi, C.; Cherian, C. T.; Huang, K.; Kravets, V. G.; Wang, F. C.; Zhang, J. C.; Pratt, A.; Grigorenko, A. N.; Guinea, F.; Geim, A. K.; Nair, R. R. . Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation . Nat. Mater. , 2017 . 16 1198 -1202 . DOI:10.1038/nmat5025http://doi.org/10.1038/nmat5025 .
Zhou, K. G.; Vasu, K. S.; Cherian, C. T.; Neek-Amal, M.; Zhang, J. C.; Ghorbanfekr-Kalashami, H.; Huang, K.; Marshall, O. P.; Kravets, V. G.; Abraham, J.; Su, Y.; Grigorenko, A. N.; Pratt, A.; Geim, A. K.; Peeters, F. M.; Novoselov, K. S.; Nair, R. R. . Electrically controlled water permeation through graphene oxide membranes . Nature , 2018 . 559 236 -240 . DOI:10.1038/s41586-018-0292-yhttp://doi.org/10.1038/s41586-018-0292-y .
Wang, J.; Sun, L.; Zou, M.; Gao, W.; Liu, C.; Shang, L.; Gu, Z.; Zhao, Y. . Bioinspired shape-memory graphene film with tunable wettability . Sci. Adv. , 2017 . 3 e1700004 DOI:10.1126/sciadv.1700004http://doi.org/10.1126/sciadv.1700004 .
Zhou, F.; Tien, H. N.; Xu, W. L.; Chen, J. T.; Liu, Q.; Hicks, E.; Fathizadeh, M.; Li, S.; Yu, M. . Ultrathin graphene oxide-based hollow fiber membranes with brush-like CO2-philic agent for highly efficient CO2 capture . Nat. Commun. , 2017 . 8 2107 DOI:10.1038/s41467-017-02318-1http://doi.org/10.1038/s41467-017-02318-1 .
Zhang, Y. F.; Han, D.; Zhao, Y. H.; Bai, S. L. . High-performance thermal interface materials consisting of vertically aligned graphene film and polymer . Carbon , 2016 . 109 552 -557 . DOI:10.1016/j.carbon.2016.08.051http://doi.org/10.1016/j.carbon.2016.08.051 .
Zhang, P.; Li, J.; Lv, L.; Zhao, Y.; Qu, L. . Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water . ACS Nano , 2017 . 11 5087 -5093 . DOI:10.1021/acsnano.7b01965http://doi.org/10.1021/acsnano.7b01965 .
Zhang, P.; Liu, F.; Liao, Q.; Yao, H.; Geng, H.; Cheng, H.; Li, C.; Qu, L. . A microstructured graphene/poly(N-isopropylacrylamide) membrane for intelligent solar water evaporation . Angew. Chem. Int. Ed. , 2018 . 57 16343 -16347 . DOI:10.1002/anie.201810345http://doi.org/10.1002/anie.201810345 .
Xi, J.; Li, Y.; Zhou, E.; Liu, Y.; Gao, W.; Guo, Y.; Ying, J.; Chen, Z.; Chen, G.; Gao, C. . Graphene aerogel films with expansion enhancement effect of high-performance electromagnetic interference shielding . Carbon , 2018 . 135 44 -51 . DOI:10.1016/j.carbon.2018.04.041http://doi.org/10.1016/j.carbon.2018.04.041 .
Zhou, E.; Xi, J.; Guo, Y.; Liu, Y.; Xu, Z.; Peng, L.; Gao, W.; Ying, J.; Chen, Z.; Gao, C. . Synergistic effect of graphene and carbon nanotube for high-performance electromagnetic interference shielding films . Carbon , 2018 . 133 316 -322 . DOI:10.1016/j.carbon.2018.03.023http://doi.org/10.1016/j.carbon.2018.03.023 .
Xu, J.; Yuan, G.; Zhu, Q.; Wang, J.; Tang, S.; Gao, L. . Enhancing the strength of graphene by a denser grain boundary . ACS Nano , 2018 . 12 4529 -4535 . DOI:10.1021/acsnano.8b00869http://doi.org/10.1021/acsnano.8b00869 .
Liu, R. Y.; Xu, A. W. . Byssal threads inspired ionic cross-linked narce-like graphene oxide paper with superior mechanical strength . RSC Adv. , 2014 . 4 40390 -40395 . DOI:10.1039/C4RA08319Ahttp://doi.org/10.1039/C4RA08319A .
Li, P.; Yang, M.; Liu, Y.; Qin, H.; Liu, J.; Xu, Z.; Liu, Y.; Meng, F.; Lin, J.; Wang, F.; Gao, C. . Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization . Nat. Commun. , 2020 . 11 2645 DOI:10.1038/s41467-020-16494-0http://doi.org/10.1038/s41467-020-16494-0 .
Ranjbartoreh, A. R.; Wang, B.; Shen, X.; Wang, G. . Advanced mechanical properties of graphene paper . J. Appl. Phys. , 2011 . 109 014306 DOI:10.1063/1.3528213http://doi.org/10.1063/1.3528213 .
Gibson, L. J.; Ashby, M. F. Cellular solids: structure and properties. 2 Ed., Cambridge University Press, Cambridge, 1997.
Sheng, L.; Liang, Y.; Jiang, L.; Wang, Q.; Wei, T.; Qu, L.; Fan, Z. . Bubble-decorated honeycomb-like graphene film as ultrahigh sensitivity pressure sensors . Adv. Funct. Mater. , 2015 . 25 6545 -6551 . DOI:10.1002/adfm.201502960http://doi.org/10.1002/adfm.201502960 .
Huang, R.; Huang, M.; Li, X.; An, F.; Koratkar, N.; Yu, Z. Z. . Porous graphene films with unprecedented elastomeric scaffold-like folding behavior for foldable energy storage devices . Adv. Mater. , 2018 . 30 1707025 DOI:10.1002/adma.201707025http://doi.org/10.1002/adma.201707025 .
Qiu, L.; Liu, J. Z.; Chang, S. L. Y.; Wu, Y.; Li, D. . Biomimetic superelastic graphene-based cellular monoliths . Nat. Commun. , 2012 . 3 1241 DOI:10.1038/ncomms2251http://doi.org/10.1038/ncomms2251 .
Gao, H. L.; Zhu, Y. B.; Mao, L. B.; Wang, F. C.; Luo, X. S.; Liu, Y. Y.; Lu, Y.; Pan, Z.; Ge, J.; Shen, W.; Zheng, Y. R.; Xu, L.; Wang, L. J.; Xu, W. H.; Wu, H. A.; Yu, S. H. . Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure . Nat. Commun. , 2016 . 7 12920 DOI:10.1038/ncomms12920http://doi.org/10.1038/ncomms12920 .
Yang, M.; Xu, Z.; Li, P.; Guo, F.; Liu, Y.; Xiao, Y.; Gao, W.; Gao, C. . Interlayer crosslinking to conquer the stress relaxation of graphene laminated materials . Mater. Horiz. , 2018 . 5 1112 -1119 . DOI:10.1039/C8MH00817Ehttp://doi.org/10.1039/C8MH00817E .
Xu, J.; Chen, J.; Zhang, M.; Hong, J. D.; Shi, G. . Highly conductive stretchable electrodes prepared by in situ reduction of wavy graphene oxide films coated on elastic tapes . Adv. Electron. Mater. , 2016 . 2 1600022 DOI:10.1002/aelm.201600022http://doi.org/10.1002/aelm.201600022 .
Jagannadham, K. . Thermal conductivity of copper-graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets . Metall. Mater. Trans. B , 2012 . 43 316 -324. .
Long, Y.; Zhang, C.; Wang, X.; Gao, J.; Wang, W.; Liu, Y. . Oxidation of SO2 to SO3 catalyzed by graphene oxide foams . J. Mater. Chem. , 2011 . 21 13934 -13941 . DOI:10.1039/c1jm12031jhttp://doi.org/10.1039/c1jm12031j .
Xue, Y.; Yu, D.; Dai, L.; Wang, R.; Li, D.; Roy, A.; Lu, F.; Chen, H.; Liu, Y.; Qu, J. . Three-dimensional B,N-doped graphene foam as a metal-free catalyst for oxygen reduction reaction . Phys. Chem. Chem. Phys. , 2013 . 15 12220 -12226 . DOI:10.1039/c3cp51942bhttp://doi.org/10.1039/c3cp51942b .
Han, A.; Jin, S.; Chen, H.; Ji, H.; Sun, Z.; Du, P. . A robust hydrogen evolution catalyst based on crystalline nickel phosphide nanoflakes on three-dimensional graphene/nickel foam: high performance for electrocatalytic hydrogen production from pH 0–14 . J. Mater. Chem. A , 2015 . 3 1941 -1946 . DOI:10.1039/C4TA06071Ghttp://doi.org/10.1039/C4TA06071G .
Worsley, M. A.; Pauzauskie, P. J.; Olson, T. Y.; Biener, J.; Satcher, J. H.; Baumann, T. F. . Synthesis of graphene aerogel with high electrical conductivity . J. Am. Chem. Soc. , 2010 . 132 14067 -14069 . DOI:10.1021/ja1072299http://doi.org/10.1021/ja1072299 .
Wang, Z. L.; Xu, D.; Xu, J. J.; Zhang, L. L.; Zhang, X. B. . Graphene oxide gel-derived, free-standing, hierarchically porous carbon for high-capacity and high-rate rechargeable Li-O2 batteries . Adv. Funct. Mater. , 2012 . 22 3699 -3705 . DOI:10.1002/adfm.201200403http://doi.org/10.1002/adfm.201200403 .
Chen, J.; Sheng, K.; Luo, P.; Li, C.; Shi, G. . Graphene hydrogels deposited in nickel foams for high-rate electrochemical capacitors . Adv. Mater. , 2012 . 24 4569 -4573 . DOI:10.1002/adma.201201978http://doi.org/10.1002/adma.201201978 .
Hu, G.; Xu, C.; Sun, Z.; Wang, S.; Cheng, H. M.; Li, F.; Ren, W. . 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries . Adv. Mater. , 2016 . 28 1603 -1609 . DOI:10.1002/adma.201504765http://doi.org/10.1002/adma.201504765 .
Huang, Y.; Huang, X. L.; Lian, J. S.; Xu, D.; Wang, L. M.; Zhang, X. B. . Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage . J. Mater. Chem. , 2012 . 22 2844 -2847 . DOI:10.1039/c2jm15865ehttp://doi.org/10.1039/c2jm15865e .
He, Y.; Zhang, N.; Wu, F.; Xu, F.; Liu, Y.; Gao, J. . Graphene oxide foams and their excellent adsorption ability for acetone gas . Mater. Res. Bull. , 2013 . 48 3553 -3558 . DOI:10.1016/j.materresbull.2013.05.056http://doi.org/10.1016/j.materresbull.2013.05.056 .
Lei, Y.; Chen, F.; Luo, Y.; Zhang, L. . Three-dimensional magnetic graphene oxide foam/Fe3O4 nanocomposite as an efficient absorbent for Cr(VI) removal . J. Mater. Sci. , 2014 . 49 4236 -4245 . DOI:10.1007/s10853-014-8118-2http://doi.org/10.1007/s10853-014-8118-2 .
Niu, Z.; Chen, J.; Hng, H. H.; Ma, J.; Chen, X. . A leavening strategy to prepare reduced graphene oxide foams . Adv. Mater. , 2012 . 24 4144 -4150 . DOI:10.1002/adma.201200197http://doi.org/10.1002/adma.201200197 .
Dong, X. C.; Xu, H.; Wang, X. W.; Huang, Y. X.; Chan-Park, M. B.; Zhang, H.; Wang, L. H.; Huang, W.; Chen, P. . 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection . ACS Nano , 2012 . 6 3206 -3213 . DOI:10.1021/nn300097qhttp://doi.org/10.1021/nn300097q .
Xi, J.; Liu, Y.; Wu, Y.; Hu, J.; Gao, W.; Zhou, E.; Chen, H.; Chen, Z.; Chen, Y.; Gao, C. . Multifunctional bicontinuous composite foams with ultralow percolation thresholds . ACS Appl. Mater. Interfaces , 2018 . 10 20806 -20815 . DOI:10.1021/acsami.8b06017http://doi.org/10.1021/acsami.8b06017 .
Yao, H.; Zhang, P.; Huang, Y.; Cheng, H.; Li, C.; Qu, L. . Highly efficient clean water production from contaminated air with a wide humidity range . Adv. Mater. , 2020 . 32 1905875 DOI:10.1002/adma.201905875http://doi.org/10.1002/adma.201905875 .
Huang, Y.; Cheng, H.; Yang, C.; Zhang, P.; Liao, Q.; Yao, H.; Shi, G.; Qu, L. . Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts . Nat. Commun. , 2018 . 9 4166 DOI:10.1038/s41467-018-06633-zhttp://doi.org/10.1038/s41467-018-06633-z .
Ren, H.; Tang, M.; Guan, B.; Wang, K.; Yang, J.; Wang, F.; Wang, M.; Shan, J.; Chen, Z.; Wei, D.; Peng, H.; Liu, Z. . Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion . Adv. Mater. , 2017 . 29 1702590 DOI:10.1002/adma.201702590http://doi.org/10.1002/adma.201702590 .
Zhang, L.; Li, R.; Tang, B.; Wang, P. . Solar-thermal conversion and thermal energy storage of graphene foam-based composites . Nanoscale , 2016 . 8 14600 -14607 . DOI:10.1039/C6NR03921Ahttp://doi.org/10.1039/C6NR03921A .
Qi, G.; Yang, J.; Bao, R.; Xia, D.; Cao, M.; Yang, W.; Yang, M.; Wei, D. . Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage . Nano Res. , 2017 . 10 802 -813 . DOI:10.1007/s12274-016-1333-1http://doi.org/10.1007/s12274-016-1333-1 .
Chang, Q.; Ma, Z.; Wang, J.; Li, P.; Yan, Y.; Shi, W.; Chen, Q.; Huang, Y.; Huang, L. . Hybrid graphene quantum dots@graphene foam nanosheets for dye-sensitized solar cell electrodes . Energy Technol. , 2016 . 4 256 -262 . DOI:10.1002/ente.201500194http://doi.org/10.1002/ente.201500194 .
Wang, Y.; Li, H.; Kong, J. . Facile preparation of mesocellular graphene foam for direct glucose oxidase electrochemistry and sensitive glucose sensing . Sens. Actuators B , 2014 . 193 708 -714 . DOI:10.1016/j.snb.2013.11.105http://doi.org/10.1016/j.snb.2013.11.105 .
Kuang, J.; Liu, L.; Gao, Y.; Zhou, D.; Chen, Z.; Han, B.; Zhang, Z. . A hierarchically structured graphene foam and its potential as a large-scale strain-gauge sensor . Nanoscale , 2013 . 5 12171 -12177 . DOI:10.1039/c3nr03379ahttp://doi.org/10.1039/c3nr03379a .
Jeong, Y. R.; Park, H.; Jin, S. W.; Hong, S. Y.; Lee, S. S.; Ha, J. S. . Highly stretchable and sensitive strain sensors using fragmentized graphene foam . Adv. Funct. Mater. , 2015 . 25 4228 -4236 . DOI:10.1002/adfm.201501000http://doi.org/10.1002/adfm.201501000 .
Peng, L.; Zheng, Y.; Li, J.; Jin, Y.; Gao, C. . Monolithic neat graphene oxide aerogel for efficient catalysis of S→O acetyl migration . ACS Catal. , 2015 . 5 3387 -3392 . DOI:10.1021/acscatal.5b00233http://doi.org/10.1021/acscatal.5b00233 .
Chen, C.; Xi, J.; Zhou, E.; Peng, L.; Chen, Z.; Gao, C. . Porous graphene microflowers for high-performance microwave absorption . Nano-Micro Lett. , 2017 . 10 26 .
Chen, C.; Xi, J.; Han, Y.; Peng, L.; Gao, W.; Xu, Z.; Gao, C. . Ultralight graphene micro-popcorns for multifunctional composite applications . Carbon , 2018 . 139 545 -555 . DOI:10.1016/j.carbon.2018.07.020http://doi.org/10.1016/j.carbon.2018.07.020 .
Xi, J.; Zhou, E.; Liu, Y.; Gao, W.; Ying, J.; Chen, Z.; Gao, C. . Wood-based straightway channel structure for high performance microwave absorption . Carbon , 2017 . 124 492 -498 . DOI:10.1016/j.carbon.2017.07.088http://doi.org/10.1016/j.carbon.2017.07.088 .
Li, Z.; Xu, Z.; Liu, Y.; Wang, R.; Gao, C. . Multifunctional non-woven fabrics of interfused graphene fibres . Nat. Commun. , 2016 . 7 13684 DOI:10.1038/ncomms13684http://doi.org/10.1038/ncomms13684 .
Li, Z.; Huang, T.; Gao, W.; Xu, Z.; Chang, D.; Zhang, C.; Gao, C. . Hydrothermally activated graphene fiber fabrics for textile electrodes of supercapacitors . ACS Nano , 2017 . 11 11056 -11065 . DOI:10.1021/acsnano.7b05092http://doi.org/10.1021/acsnano.7b05092 .
Kinloch, I. A.; Suhr, J.; Lou, J.; Young, R. J.; Ajayan, P. M. . Composites with carbon nanotubes and graphene: an outlook . Science , 2018 . 362 547 DOI:10.1126/science.aat7439http://doi.org/10.1126/science.aat7439 .
Li, K.; Liu, J.; Huang, Y.; Bu, F.; Xu, Y. . Integration of ultrathin graphene/polyaniline composite nanosheets with a robust 3D graphene framework for highly flexible all-solid-state supercapacitors with superior energy density and exceptional cycling stability . J. Mater. Chem. A , 2017 . 5 5466 -5474 . DOI:10.1039/C6TA11224Bhttp://doi.org/10.1039/C6TA11224B .
Zhang, Q.; Zhou, A.; Wang, J.; Wu, J.; Bai, H. . Degradation-induced capacitance: a new insight into the superior capacitive performance of polyaniline/graphene composites . Energy Environ. Sci. , 2017 . 10 2372 -2382 . DOI:10.1039/C7EE02018Jhttp://doi.org/10.1039/C7EE02018J .
Wu, J.; Zhang, Q.; Zhou, A.; Huang, Z.; Bai, H.; Li, L. . Phase-separated polyaniline/graphene composite electrodes for high-rate electrochemical supercapacitors . Adv. Mater. , 2016 . 28 10211 -10216 . DOI:10.1002/adma.201601153http://doi.org/10.1002/adma.201601153 .
Wu, J.; Zhang, Q. E.; Wang, J.; Huang, X.; Bai, H. . A self-assembly route to porous polyaniline/reduced graphene oxide composite materials with molecular-level uniformity for high-performance supercapacitors . Energy Environ. Sci. , 2018 . 11 1280 -1286 . DOI:10.1039/C8EE00078Fhttp://doi.org/10.1039/C8EE00078F .
Boland, C. S.; Khan, U.; Ryan, G.; Barwich, S.; Charifou, R.; Harvey, A.; Backes, C.; Li, Z.; Ferreira, M. S.; Möbius, M. E.; Young, R. J.; Coleman, J. N. . Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites . Science , 2016 . 354 1257 -1260 . DOI:10.1126/science.aag2879http://doi.org/10.1126/science.aag2879 .
Zhang, M.; Yu, X.; Ma, H.; Du, W.; Qu, L.; Li, C.; Shi, G. . Robust graphene composite films for multifunctional electrochemical capacitors with an ultrawide range of areal mass loading toward high-rate frequency response and ultrahigh specific capacitance . Energy Environ. Sci. , 2018 . 11 559 -565 . DOI:10.1039/C7EE03349Dhttp://doi.org/10.1039/C7EE03349D .
Zhao, J.; Zhu, Y.; Pan, F.; He, G.; Fang, C.; Cao, K.; Xing, R.; Jiang, Z. . Fabricating graphene oxide-based ultrathin hybrid membrane for pervaporation dehydration via layer-by-layer self-assembly driven by multiple interactions . J. Membr. Sci. , 2015 . 487 162 -172 . DOI:10.1016/j.memsci.2015.03.073http://doi.org/10.1016/j.memsci.2015.03.073 .
He, G.; He, X.; Wang, X.; Chang, C.; Zhao, J.; Li, Z.; Wu, H.; Jiang, Z. . A highly proton-conducting, methanol-blocking Nafion composite membrane enabled by surface-coating crosslinked sulfonated graphene oxide . Chem. Commun. , 2016 . 52 2173 -2176 . DOI:10.1039/C5CC07406Ahttp://doi.org/10.1039/C5CC07406A .
Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. . Graphene-based composite materials . Nature , 2006 . 442 282 -286 . DOI:10.1038/nature04969http://doi.org/10.1038/nature04969 .
Li, D.; Kaner, R. B. . Graphene-based materials . Science , 2008 . 320 1170 DOI:10.1126/science.1158180http://doi.org/10.1126/science.1158180 .
Hu, M.; Mi, B. . Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction . J. Membr. Sci. , 2014 . 469 80 -87 . DOI:10.1016/j.memsci.2014.06.036http://doi.org/10.1016/j.memsci.2014.06.036 .
Yang, D.; Zhao, J.; Shi, J.; Wang, X.; Zhang, S.; Jiang, Z. . Combination of redox assembly and biomimetic mineralization to prepare graphene-based composite cellular foams for versatile catalysis . ACS Appl. Mater. Interfaces , 2017 . 9 43950 -43958 . DOI:10.1021/acsami.7b11601http://doi.org/10.1021/acsami.7b11601 .
Vickery, J. L.; Patil, A. J.; Mann, S. . Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures . Adv. Mater. , 2009 . 21 2180 -2184 . DOI:10.1002/adma.200803606http://doi.org/10.1002/adma.200803606 .
Yun, Y. J.; Hong, W. G.; Kim, W. J.; Jun, Y.; Kim, B. H. . A novel method for applying reduced graphene oxide directly to electronic textiles from yarns to fabrics . Adv. Mater. , 2013 . 25 5701 -5705 . DOI:10.1002/adma.201303225http://doi.org/10.1002/adma.201303225 .
Hu, R.; He, Y.; Huang, M.; Zhao, G.; Zhu, H. . Strong adhesion of graphene oxide coating on polymer separation membranes . Langmuir , 2018 . 34 10569 -10579 . DOI:10.1021/acs.langmuir.8b02342http://doi.org/10.1021/acs.langmuir.8b02342 .
Chen, T.; Wang, S.; Wu, Z.; Wang, X.; Peng, J.; Wu, B.; Cui, J.; Fang, X.; Xie, Y.; Zheng, N. . A cake making strategy to prepare reduced graphene oxide wrapped plant fiber sponges for high-efficiency solar steam generation . J. Mater. Chem. A , 2018 . 6 14571 -14576 . DOI:10.1039/C8TA04420Ahttp://doi.org/10.1039/C8TA04420A .
Krishnamoorthy, K.; Navaneethaiyer, U.; Mohan, R.; Lee, J.; Kim, S. J. . Graphene oxide nanostructures modified multifunctional cotton fabrics . Appl. Nanosci. , 2012 . 2 119 -126 . DOI:10.1007/s13204-011-0045-9http://doi.org/10.1007/s13204-011-0045-9 .
Fugetsu, B.; Sano, E.; Yu, H.; Mori, K.; Tanaka, T. . Graphene oxide as dyestuffs for the creation of electrically conductive fabrics . Carbon , 2010 . 48 3340 -3345 . DOI:10.1016/j.carbon.2010.05.016http://doi.org/10.1016/j.carbon.2010.05.016 .
Niu, Z.; Liu, L.; Zhang, L.; Shao, Q.; Zhou, W.; Chen, X.; Xie, S. . A universal strategy to prepare functional porous graphene hybrid architectures . Adv. Mater. , 2014 . 26 3681 -3687 . DOI:10.1002/adma.201400143http://doi.org/10.1002/adma.201400143 .
Yang, S.; Bachman, R. E.; Feng, X.; Müllen, K. . Use of organic precursors and graphenes in the controlled synthesis of carbon-containing nanomaterials for energy storage and conversion . Acc. Chem. Res. , 2013 . 46 116 -128 . DOI:10.1021/ar3001475http://doi.org/10.1021/ar3001475 .
Chen, K.; Chen, L.; Chen, Y.; Bai, H.; Li, L. . Three-dimensional porous graphene-based composite materials: electrochemical synthesis and application . J. Mater. Chem. , 2012 . 22 20968 -20976 . DOI:10.1039/c2jm34816khttp://doi.org/10.1039/c2jm34816k .
Qiu, B.; Xing, M.; Zhang, J. . Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries . J. Am. Chem. Soc. , 2014 . 136 5852 -5855 . DOI:10.1021/ja500873uhttp://doi.org/10.1021/ja500873u .
Dai, Y.; Jing, Y.; Zeng, J.; Qi, Q.; Wang, C.; Goldfeld, D.; Xu, C.; Zheng, Y.; Sun, Y. . Nanocables composed of anatase nanofibers wrapped in UV-light reduced graphene oxide and their enhancement of photoinduced electron transfer in photoanodes . J. Mater. Chem. , 2011 . 21 18174 -18179 . DOI:10.1039/c1jm13641khttp://doi.org/10.1039/c1jm13641k .
Tong, Z.; Yang, D.; Shi, J.; Nan, Y.; Sun, Y.; Jiang, Z. . Three-dimensional porous aerogel constructed by g-C3N4 and graphene oxide nanosheets with excellent visible-light photocatalytic performance . ACS Appl. Mater. Interfaces , 2015 . 7 25693 -25701 . DOI:10.1021/acsami.5b09503http://doi.org/10.1021/acsami.5b09503 .
Kong, L.; Yin, X.; Zhang, Y.; Yuan, X.; Li, Q.; Ye, F.; Cheng, L.; Zhang, L. . Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters . J. Phys. Chem. C , 2013 . 117 19701 -19711 . DOI:10.1021/jp4058498http://doi.org/10.1021/jp4058498 .
Hu, C.; Mou, Z.; Lu, G.; Chen, N.; Dong, Z.; Hu, M.; Qu, L. . 3D graphene-Fe3O4 nanocomposites with high-performance microwave absorption . Phys. Chem. Chem. Phys. , 2013 . 15 13038 -13043 . DOI:10.1039/c3cp51253chttp://doi.org/10.1039/c3cp51253c .
Liu, P.; Huang, Y.; Yan, J.; Yang, Y.; Zhao, Y. . Construction of CuS nanoflakes vertically aligned on magnetically decorated graphene and their enhanced microwave absorption properties . ACS Appl. Mater. Interfaces , 2016 . 8 5536 -5546 . DOI:10.1021/acsami.5b10511http://doi.org/10.1021/acsami.5b10511 .
0
浏览量
3
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构