a.Department of Polymeric Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
b.Key Laboratory of Advanced Civil Engineering Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
puhongting@tongji.edu.cn
Scan for full text
Zhi-Yu Hu, Hong-Ting Pu, Jian-Guo Wu. Platinum Atoms Dispersed in Single-chain Polymer Nanoparticles[J]. Chinese Journal of Polymer Science, 2021,39(4):441-446.
Zhi-Yu Hu, Hong-Ting Pu, Jian-Guo Wu. Platinum Atoms Dispersed in Single-chain Polymer Nanoparticles[J]. Chinese Journal of Polymer Science, 2021,39(4):441-446.
Zhi-Yu Hu, Hong-Ting Pu, Jian-Guo Wu. Platinum Atoms Dispersed in Single-chain Polymer Nanoparticles[J]. Chinese Journal of Polymer Science, 2021,39(4):441-446. DOI: 10.1007/s10118-021-2499-x.
Zhi-Yu Hu, Hong-Ting Pu, Jian-Guo Wu. Platinum Atoms Dispersed in Single-chain Polymer Nanoparticles[J]. Chinese Journal of Polymer Science, 2021,39(4):441-446. DOI: 10.1007/s10118-021-2499-x.
The intramolecular cross-linking of single polymer chains can form single-chain nanoparticles (SCNPs), which have many applications. In this study, styrenic copolymers with pendent triphenylphosphine as the coordination site for platinum ions (Pt(II)) and benzocyclobutene as the latent reactive groups are synthesized. Triphenylphosphine groups in the chains can coordinate Pt(II) and aid slight single-chain folding in dilute solution. The intramolecular cross-linking caused by the ring-open reaction of benzocyclobutene completes the single-chain collapse and forms stable SCNPs in dilute solution. Pt(II) embedded in SCNPs can be further reduced to platinum atoms (Pt(0)). Pt(0) steadily and atomically dispersed in SCNPs exhibits better catalytic properties than normal polymer carried platinum particles do for the reduction of ,p,-nitrophenol to ,p,-aminophenol.
Single-chainPolymer nanoparticlesIntramolecular cross-linkingPlatinumCoordination
Zhang, O.; Yu, H. M.; Lu, L. M.; Wen, Y. P.; Duan, X. M. . Poly(thiophene-3-acetic acid)-palladium nanoparticle composite modified electrodes for supersensitive determination of hydrazine . Chinese J. Polym. Sci. , 2013 . 31 419 -426 . DOI:10.1007/s10118-013-1230-yhttp://doi.org/10.1007/s10118-013-1230-y .
Xu, Q. L.; Li, H. X.; Wang, G. C. . Preparation of polyalkylcyanoacrylate nanoparticles with various morphologies . Chinese J. Polym. Sci. , 2011 . 29 336 -341 . DOI:10.1007/s10118-011-1033-yhttp://doi.org/10.1007/s10118-011-1033-y .
Li, Q. L.; Li, L.; Wang, H. S.; Wang, R.; Wang, W.; Jiang, Y. J.; Tian, Q.; Liu, J. P. . The doubly thermo-responsive triblock copolymer nanoparticles prepared through seeded RAFT polymerization . Chinese J. Polym. Sci. , 2017 . 35 66 -77 . DOI:10.1007/s10118-016-1859-4http://doi.org/10.1007/s10118-016-1859-4 .
Ormategui, N.; Zhang, S. W.; Loinaz, I.; Brydson, R.; Nelson, A.; Vakurov, A. . Interaction of poly(N-isopropylacrylamide) (pNIPAM) based nanoparticles and their linear polymer precursor with phospholipid membrane models . Bioelectrochemistry , 2012 . 87 211 -219 . DOI:10.1016/j.bioelechem.2011.12.006http://doi.org/10.1016/j.bioelechem.2011.12.006 .
Knoefel, N. D.; Rothfuss, H.; Barner-Kowollik, C.; Roesky, P. W. . $$ {{\rm{M}}_{2}^{4+}} $$http://notExist.jpg paddlewheel clusters as junction points in single-chain nanoparticles . Polym. Chem. , 2019 . 10 86 -93 . DOI:10.1039/C8PY01486Hhttp://doi.org/10.1039/C8PY01486H .
Willenbacher, J.; Altintas, O.; Trouillet, V.; Knöfel, N.; Monteiro, M. J.; Roesky, P. W.; Barner-Kowollik, C. . Pd-complex driven formation of single-chain nanoparticles . Polym. Chem. , 2015 . 6 4358 -4365 . DOI:10.1039/C5PY00389Jhttp://doi.org/10.1039/C5PY00389J .
Rubio-Cervilla, J.; Gonzalez, E.; Pomposo, J. A. . Advances in single-chain nanoparticles for catalysis applications . Nanomaterials , 2017 . 7 341 DOI:10.3390/nano7100341http://doi.org/10.3390/nano7100341 .
Kroger, A. P. P.; Paulusse, J. M. J. . Single-chain polymer nanoparticles in controlled drug delivery and targeted imaging . J. Control. Release , 2018 . 286 326 -347 . DOI:10.1016/j.jconrel.2018.07.041http://doi.org/10.1016/j.jconrel.2018.07.041 .
Kroger, A. P. P.; Hamelmann, N. M.; Juan, A.; Lindhoud, S.; Paulusse, J. M. J. . Biocompatible single-chain polymer nanoparticles for drug delivery a dual approach . ACS Appl. Mater. Interfaces , 2018 . 10 30946 -30951 . DOI:10.1021/acsami.8b07450http://doi.org/10.1021/acsami.8b07450 .
Kilic, D.; Pamukcu, C.; Balta, D. K.; Temel, B. A.; Temel, G. . Rapid synthesis of fluorescent single-chain nanoparticles via photoinduced step-growth polymerization of pendant carbazole units . Eur. Polym. J. , 2020 . 125 109469 DOI:10.1016/j.eurpolymj.2019.109469http://doi.org/10.1016/j.eurpolymj.2019.109469 .
Fu, C. L.; Sun, Z. Y.; An, L. J. . The properties of a single polymer chain in solvent confined in a slit: a molecular dynamics simulation . Chinese J. Polym. Sci. , 2012 . 31 388 -398. .
Tuten, B. T.; Chao, D. M.; Lyon, C. K.; Berda, E. B. . Single-chain polymer nanoparticles via reversible disulfide bridges . Polym. Chem. , 2012 . 3 3068 -3071 . DOI:10.1039/c2py20308ahttp://doi.org/10.1039/c2py20308a .
Ana, S. S.; Fulton, D. A.; Pomposo, J. A. . pH-responsive single-chain polymer nanoparticles utilising dynamic covalent enamine bonds . Chem. Commun. , 2014 . 50 1871 -1874 . DOI:10.1039/C3CC48733Dhttp://doi.org/10.1039/C3CC48733D .
Wang, F.; Pu, H. T.; Che, X. . Voltage-responsive single-chain polymer nanoparticles via host-guest interaction . Chem. Commun. , 2016 . 52 3516 -3519 . DOI:10.1039/C5CC09984Fhttp://doi.org/10.1039/C5CC09984F .
Zhu, Z. G.; Xu, N.; Yu, Q. P.; Guo, L.; Cao, H.; Lu, X. H.; Cai, Y. L. . Construction and self-assembly of single-chain polymer nanoparticles via coordination association and electrostatic repulsion in water . Macromol. Rapid Commun. , 2015 . 36 1521 -1527 . DOI:10.1002/marc.201500281http://doi.org/10.1002/marc.201500281 .
Wang, F.; Zhang, J. Q.; Ding, X.; Dong, S. Y.; Liu, M.; Zheng, B.; Li, S. J.; Wu, L.; Yu, Y. H. ; Gibson, W.; Huang, F. H. . Metal coordination mediated reversible conversion between linear and cross-linked supramolecular polymers . Angew. Chem. Int. Ed. , 2010 . 49 1090 -1094 . DOI:10.1002/anie.200906389http://doi.org/10.1002/anie.200906389 .
Fischer, T. S.; Spann, S.; An, Q.; Luy, B.; Tsotsalas, M.; Blinco, J. P.; Mutlu, H.; Barner-Kowollik, C. . Self-reporting and refoldable profluorescent single-chain nanoparticles . Chem. Sci. , 2018 . 9 4696 -4702 . DOI:10.1039/C8SC01009Ahttp://doi.org/10.1039/C8SC01009A .
Willenbacher, J.; Wuest, K. N. R.; Mueller, J. O.; Kaupp, M.; Wagenknech, H. A.; Barner-Kowollik, C. . Photochemical design of functional fluorescent single-chain nanoparticles . ACS Macro Lett. , 2014 . 3 574 -579 . DOI:10.1021/mz500292ehttp://doi.org/10.1021/mz500292e .
Rubio-Cervilla, J.; M. De Molina, P.; Robles-Hernandez, B.; Arbe, A.; Moreno, A.; Alegria, A.; Colmenero, J.; Pomposo, J. A. . Facile access to completely deuterated single-chain nanoparticles enabled by intramolecular azide photodecomposition . Macromol. Rapid Commun. , 2019 . 40 e1900046 DOI:10.1002/marc.201900046http://doi.org/10.1002/marc.201900046 .
Saha, R.; Sekar, G. . Selective oxidation of alkylarenes to aromatic acids/ketone in water by using reusable binaphthyl stabilized Pt nanoparticles (Pt-BNP) as catalyst . Appl. Catal. B-Environ. , 2019 . 250 325 -336 . DOI:10.1016/j.apcatb.2019.03.052http://doi.org/10.1016/j.apcatb.2019.03.052 .
De-La-Cuesta, J.; Gonzalez, E.; Pomposo, J. A. . Advances in fluorescent single-chain nanoparticles . Molecules , 2017 . 22 1819 DOI:10.3390/molecules22111819http://doi.org/10.3390/molecules22111819 .
Croce, T. A.; Hamilton, S. K.; Chen, M. L.; Muchalski, H.; Harth, E. . Alternative o-quinodimethane cross-linking precursors for intramolecular chain collapse nanoparticles . Macromolecules , 2007 . 40 6028 -6031 . DOI:10.1021/ma071111mhttp://doi.org/10.1021/ma071111m .
Prasher, A.; Loynd, C. M.; Tuten, B. T.; Frank, P. G.; Chao, D. M.; Berda, E. B. . Efficient fabrication of polymer nanoparticles via sonogashira cross-linking of linear polymers in dilute solution . J. Polym. Sci., Part A: Polym. Chem. , 2016 . 54 209 -217 . DOI:10.1002/pola.27942http://doi.org/10.1002/pola.27942 .
Asenjo-Sanz, I.; Verde-Sesto, E.; Pomposo, J. A. . Valuable structure-size relationships for tadpole-shaped single-chain nanoparticles with long and short flexible tails unveiled . Phys. Chem. Chem. Phys. , 2019 . 21 10884 -10887 . DOI:10.1039/C9CP01318Khttp://doi.org/10.1039/C9CP01318K .
Wang, P.; Pu, H. T.; Jin, M. . Single-chain nanoparticles with well-defined structure via intramolecular crosslinking of linear polymers with pendant benzoxazine groups . J. Polym. Sci., Part A: Polym. Chem. , 2011 . 49 5133 -5141 . DOI:10.1002/pola.25003http://doi.org/10.1002/pola.25003 .
Knofel, N. D.; Rothfuss, H.; Willenbacher, J.; Barner-Kowollik, C.; Roesky, P. W. . Platinum(II)-crosslinked single-chain nanoparticles: an approach towards recyclable homogeneous catalysts . Angew. Chem. Int. Ed. , 2017 . 56 4950 -4954 . DOI:10.1002/anie.201700718http://doi.org/10.1002/anie.201700718 .
Wang, F.; Pu, H. T.; Jin, M.; Wan, D. C. . Supramolecular nanoparticles via single-chain folding driven by ferrous ions . Macromol. Rapid Commun. , 2016 . 37 330 -336 . DOI:10.1002/marc.201500616http://doi.org/10.1002/marc.201500616 .
Pomposo, J. A. . Bioinspired single-chain polymer nanoparticles . Polym. Int. , 2014 . 63 589 -592 . DOI:10.1002/pi.4671http://doi.org/10.1002/pi.4671 .
Liu, Y. L.; Turunen, P.; De Waal, B. F. M.; Blank, K. G.; Rowan, A. E.; Palmans, A. R. A.; Meijer, E. W. . Catalytic single-chain polymeric nanoparticles at work: from ensemble towards single-particle kinetics . Mol. Syst. Des. Eng. , 2018 . 3 609 -618 . DOI:10.1039/C8ME00017Dhttp://doi.org/10.1039/C8ME00017D .
Harth, E.; Van Horn, B.; Lee, V. Y.; Germack, D. S.; Gonzales, C. P.; Miller, R. D.; Hawker, C. J. . A facile approach to architecturally defined nanoparticles via intramolecular chain collapse . J. Am. Chem. Soc. , 2002 . 124 8653 -8660 . DOI:10.1021/ja026208xhttp://doi.org/10.1021/ja026208x .
Zhu, L. P.; Yi, Z.; Liu, F.; Wei, X. Z.; Zhu, B. K.; Xu, Y. Y. . Amphiphilic graft copolymers based on ultrahigh molecular weight poly(styrene-alt-maleic anhydride) with poly(ethylene glycol) side chains for surface modification of polyethersulfone membranes . Eur. Polym. J. , 2008 . 44 1907 -1914 . DOI:10.1016/j.eurpolymj.2008.03.015http://doi.org/10.1016/j.eurpolymj.2008.03.015 .
Harrisson, S.; Wooley, K. L. . Shell-crosslinked nanostructures from amphiphilic AB and ABA block copolymers of styrene-alt-(maleic anhydride) and styrene: polymerization, assembly and stabilization in one pot . Chem. Commun. , 2005 . 26 3259 -3261. .
Tuteja, A.; Mackay, M. E.; Hawker, C. J.; van Horn, B.; Ho, D. L. . Molecular architecture and rheological characterization of novel intramolecularly crosslinked polystyrene nanoparticles . J. Polym. Sci., Part B: Polym. Phys. , 2010 . 44 1930 -1947. .
Kim, Y.; Pyun, J.; Frechet, J. M. J.; Hawker, C. J.; Frank, C. W. . The dramatic effect of architecture on the self-assembly of block copolymers at interfaces . Langmuir , 2005 . 21 10444 -10458 . DOI:10.1021/la047122fhttp://doi.org/10.1021/la047122f .
Dirlam, P. T.; Kim, H. J.; Arrington, K. J.; Chung, W. J.; Sahoo, R.; Hill, L. J.; Costanzo, P. J.; Theato, P.; Char, K.; Pyun, J. . Single chain polymer nanoparticles via sequential ATRP and oxidative polymerization . Polym. Chem. , 2013 . 4 3765 -3773 . DOI:10.1039/c3py00321chttp://doi.org/10.1039/c3py00321c .
Mei, Y.; Sharma, G.; Lu, Y.; Ballauff, M.; Drechsler, M.; Irrgang, T.; Kempe, R. . High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes . Langmuir , 2005 . 21 12229 -12234 . DOI:10.1021/la052120whttp://doi.org/10.1021/la052120w .
Nie, R. F.; Liang, D.; Shen, L.; Gao, J.; Chen, P.; Hou, Z. Y. . Selective oxidation of glycerol with oxygen in base-free solution over MWCNTs supported PtSb alloy nanoparticles . Appl. Catal. B-Environ. , 2012 . 127 212 -220 . DOI:10.1016/j.apcatb.2012.08.026http://doi.org/10.1016/j.apcatb.2012.08.026 .
Wunder, S.; Polzer, F.; Lu, Y.; Mei, Y.; Ballauff, M. . Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes . J. Phys. Chem. C , 2010 . 114 8814 -8820 . DOI:10.1021/jp101125jhttp://doi.org/10.1021/jp101125j .
0
浏览量
3
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构