1.Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
mszhangk@scut.edu.cn (K.Z.)
msfhuang@scut.edu.cn (F.H.)
Scan for full text
Zhen Chen, Shan-Shan Ma, Kai Zhang, 等. A Near-infrared Non-fullerene Acceptor with Thienopyrrole-expanded Benzo[1,2-
Zhen Chen, Shan-Shan Ma, Kai Zhang, et al. A Near-infrared Non-fullerene Acceptor with Thienopyrrole-expanded Benzo[1,2-
Zhen Chen, Shan-Shan Ma, Kai Zhang, 等. A Near-infrared Non-fullerene Acceptor with Thienopyrrole-expanded Benzo[1,2-
Zhen Chen, Shan-Shan Ma, Kai Zhang, et al. A Near-infrared Non-fullerene Acceptor with Thienopyrrole-expanded Benzo[1,2-
A near-infrared non-fullerene acceptor (NFA) BDTIC, based on thienopyrrole-expanded benzo[1,2-,b,:4,5-,b,′]dithiophene unit (heptacyclic ,S,N,-heteroacene) as core, is designed and synthesized. The aromatic pyrrole ring with strong electron-donating ability in the core enhances the intramolecular charge transfer effect, finely tunes the optical bandgap and absorption profile of BDTIC, and thus results in a narrowed optical bandgap (,$$E_{\rm{g}}^{\rm{opt}}$$,http://notExist.jpg,) of 1.38 eV and a near-infrared absorption to 900 nm. When BDTIC is paired with donor polymer PBDB-T to fabricate organic solar cells, the optimized device achieves a best power conversion efficiency of 12.1% with a short-circuit current density of 20.0 mA·cm,–2, and an open-circuit voltage of 0.88 V. The photovoltaic performance benefits from the broad absorption, weak bimolecular recombination, efficient charge separation and collection, and favorable blend morphology. This work demonstrates that thienopyrrole-expanded benzo[1,2-,b,:4,5-,b,′]dithiophene unit (heptacyclic ,S,N,-heteroacene) is a promising building unit to construct high-performance NFAs by enhancing the intramolecular charge transfer effect, broadening absorption as well as maintaining good intermolecular stacking property.
Organic solar cells (OSCs)Non-fullerene acceptors (NFAs)Heptacyclic SN-heteroacene
Brabec, C. J.; Gowrisanker, S.; Halls, J. J. M.; Laird, D.; Jia, S.; Williams, S. P. . Polymer-fullerene bulk-heterojunction solar cells . Adv. Mater. , 2010 . 22 3839 -3856 . DOI:10.1002/adma.200903697http://doi.org/10.1002/adma.200903697 .
Li, Y. . Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption . Acc. Chem. Res. , 2012 . 45 723 -733 . DOI:10.1021/ar2002446http://doi.org/10.1021/ar2002446 .
Qu, J. F.; Liu, J.; Li, S. Da; Xie, Z. Y.; Geng, Y. H. . Donor-acceptor conjugated cooligomers for single molecule solar cells . Chinese J. Polym. Sci. , 2013 . 31 815 -822 . DOI:10.1007/s10118-013-1276-xhttp://doi.org/10.1007/s10118-013-1276-x .
Krebs, F. C.; Espinosa, N.; Hösel, M.; Søndergaard, R. R.; Jørgensen, M. . 25th Anniversary article: rise to power-OPV-based solar parks . Adv. Mater. , 2014 . 26 29 -39 . DOI:10.1002/adma.201302031http://doi.org/10.1002/adma.201302031 .
Li, Z. Y.; Zhong, W. K.; Ying, L.; Li, N.; Liu, F.; Huang, F.; Cao, Y. . Achieving efficient thick film all-polymer solar cells using a green solvent additive . Chinese J. Polym. Sci. , 2020 . 38 323 -331 . DOI:10.1007/s10118-020-2356-3http://doi.org/10.1007/s10118-020-2356-3 .
Zhang, K.; Liu, X.; Xu, B.; Cui, Y.; Sun, M.; Hou, J. . High-performance fullerene-free polymer solar cells with solution-processed conjugated polymers as anode interfacial layer . Chinese J. Polym. Sci. , 2017 . 35 219 -229 . DOI:10.1007/s10118-017-1888-7http://doi.org/10.1007/s10118-017-1888-7 .
Liao, Q.; Kang, Q.; Yang, Y.; An, C.; Xu, B.; Hou, J. . Tailoring and modifying an organic electron acceptor toward the cathode interlayer for highly efficient organic solar cells . Adv. Mater. , 2020 . 32 1906557 DOI:10.1002/adma.201906557http://doi.org/10.1002/adma.201906557 .
Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, C.; Lau, T. K.; Zhang, G.; Lu, X.; Yip, H. L.; So, S. K.; Beaupré, S.; Mainville, M.; Johnson, P. A.; Leclerc, M.; Chen, H.; Peng, H.; Li, Y.; Zou, Y. . Fused benzothiadiazole: a building block for n-type organic acceptor to achieve high-performance organic solar cells . Adv. Mater. , 2019 . 31 1 -8. .
Yan, C.; Liu, T.; Chen, Y.; Ma, R.; Tang, H.; Li, G.; Li, T.; Xiao, Y.; Yang, T.; Lu, X.; Zhan, X.; Yan, H.; Li, G.; Tang, B. . ITC-2Cl: a versatile middle-bandgap nonfullerene acceptor for high-efficiency panchromatic ternary organic solar cells . Sol. RRL , 2020 . 4 1900377 DOI:10.1002/solr.201900377http://doi.org/10.1002/solr.201900377 .
Chen, T. W.; Peng, K. L.; Lin, Y. W.; Su, Y. J.; Ma, K. J.; Hong, L.; Chang, C. C.; Hou, J.; Hsu, C. S. . A chlorinated nonacyclic carbazole-based acceptor affords over 15% efficiency in organic solar cells . J. Mater. Chem. A , 2020 . 8 1131 -1137 . DOI:10.1039/C9TA12605Hhttp://doi.org/10.1039/C9TA12605H .
Dong, S.; Zhang, K.; Jia, T.; Zhong, W.; Wang, X.; Huang, F.; Cao, Y. . Suppressing the excessive aggregation of nonfullerene acceptor in blade-coated active layer by using n-type polymer additive to achieve large-area printed organic solar cells with efficiency over 15% . EcoMat , 2019 . 1 12006 .
Geng, S. Z.; Yang, W. T.; Gao, J.; Li, S. X.; Shi, M. M.; Lau, T. K.; Lu, X. H.; Li, C. Z.; Chen, H. Z. . Non-fullerene acceptors with a thieno[3,4-c]pyrrole-4,6-dione (TPD) core for efficient organic solar cells . Chinese J. Polym. Sci. , 2019 . 37 1005 -1014 . DOI:10.1007/s10118-019-2309-xhttp://doi.org/10.1007/s10118-019-2309-x .
Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; Xiao, Z.; Ding, L.; Xia, R.; Yip, H. L.; Cao, Y.; Chen, Y. . Organic and solution-processed tandem solar cells with 17.3% efficiency . Science , 2018 . 361 1094 -1098 . DOI:10.1126/science.aat2612http://doi.org/10.1126/science.aat2612 .
Lin, Y.; Adilbekova, B.; Firdaus, Y.; Yengel, E.; Faber, H.; Sajjad, M.; Zheng, X.; Yarali, E.; Seitkhan, A.; Bakr, O. M.; El-Labban, A.; Schwingenschlögl, U.; Tung, V.; McCulloch, I.; Laquai, F.; Anthopoulos, T. D. . 17% Efficient organic solar cells based on liquid exfoliated WS2 as a replacement for PEDOT:PSS . Adv. Mater. , 2019 . 31 1902965 DOI:10.1002/adma.201902965http://doi.org/10.1002/adma.201902965 .
Zhan, L.; Li, S.; Lau, T.-K.; Cui, Y.; Lu, X.; Shi, M.; Li, C. Z.; Li, H.; Hou, J.; Chen, H. . Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model . Energy Environ. Sci. , 2020 . 13 635 -645 . DOI:10.1039/C9EE03710Ahttp://doi.org/10.1039/C9EE03710A .
Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. . An electron acceptor challenging fullerenes for efficient polymer solar cells . Adv. Mater. , 2015 . 27 1170 -1174 . DOI:10.1002/adma.201404317http://doi.org/10.1002/adma.201404317 .
Mihailetchi, B. V. D.;. van Duren, J. K. J; Blom, P. W. M.; Hummelen, J. C.; Janssen, R. A. J.; Kroon, J. M.; Rispens, M. T.; Verhees, W. J. H.; Wienk, M. M. . Electron transport in a methanofullerene . Int. J. Eng. Sci. Technol. , 2010 . 2 610 -617. .
Huang, F.; Bo, Z. S.; Geng, Y. H.; Wang, X. H.; Wang, L. X.; Ma, Y. G.; Hou, J. H.; Hu, W. P.; Pei, J.; Dong, H. L.; Wang, S.; Li, Z.; Shuai, Z. G.; Li, Y. F.; Cao, Y. . Study on optoelectronic polymers: an overview and outlook . Acta Polymerica Sinica (in Chinese) , 2019 . 50 988 -1046. .
Wu, Y.; Zheng, Y.; Yang, H.; Sun, C.; Dong, Y.; Cui, C.; Yan, H.; Li, Y. . Rationally pairing photoactive materials for high-performance polymer solar cells with efficiency of 16.53% . Sci. China Chem. , 2019 . 63 265 -271. .
Fan, B.; Zhang, D.; Li, M.; Zhong, W.; Zeng, Z.; Ying, L.; Huang, F.; Cao, Y. . Achieving over 16% efficiency for single-junction organic solar cells . Sci. China Chem. , 2019 . 62 746 -752 . DOI:10.1007/s11426-019-9457-5http://doi.org/10.1007/s11426-019-9457-5 .
Lin, Y.; Li, T.; Zhao, F.; Han, L.; Wang, Z.; Wu, Y.; He, Q.; Wang, J.; Huo, L.; Sun, Y.; Wang, C.; Ma, W.; Zhan, X. . Structure evolution of oligomer fused-ring electron acceptors toward high efficiency of as-cast polymer solar cells . Adv. Energy Mater. , 2016 . 6 1600854 DOI:10.1002/aenm.201600854http://doi.org/10.1002/aenm.201600854 .
Wang, W.; Lu, H.; Chen, Z.; Jia, B.; Li, K.; Ma, W.; Zhan, X. . High-performance NIR-sensitive fused tetrathienoacene electron acceptors . J. Mater. Chem. A , 2020 . 8 3011 -3017 . DOI:10.1039/C9TA13128Khttp://doi.org/10.1039/C9TA13128K .
Jia, B.; Wang, J.; Wu, Y.; Zhang, M.; Jiang, Y.; Tang, Z.; Russell, T. P.; Zhan, X. . Enhancing the performance of a fused-ring electron acceptor by unidirectional extension . J. Am. Chem. Soc. , 2019 . 141 19023 -19031 . DOI:10.1021/jacs.9b08988http://doi.org/10.1021/jacs.9b08988 .
Wang, H.; Cao, J.; Yu, J.; Zhang, Z.; Geng, R.; Yang, L.; Tang, W. . Molecular engineering of central fused-ring cores of non-fullerene acceptors for high-efficiency organic solar cells . J. Mater. Chem. A , 2019 . 7 4313 -4333 . DOI:10.1039/C8TA12465Ehttp://doi.org/10.1039/C8TA12465E .
Xu, S.; Zhou, Z.; Liu, W.; Zhang, Z.; Liu, F.; Yan, H.; Zhu, X. . A twisted thieno[3,4-b]thiophene-based electron acceptor featuring a 14-π-electron indenoindene core for high-performance organic photovoltaics . Adv. Mater. , 2017 . 29 1 -6. .
Huang, C.; Liao, X.; Gao, K.; Zuo, L.; Lin, F.; Shi, X.; Li, C. Z.; Liu, H.; Li, X.; Liu, F.; Chen, Y.; Chen, H.; Jen, A. K. Y. . Highly efficient organic solar cells based on S,N-heteroacene non-fullerene acceptors . Chem. Mater. , 2018 . 30 5429 -5434 . DOI:10.1021/acs.chemmater.8b02276http://doi.org/10.1021/acs.chemmater.8b02276 .
Sun, J.; Ma, X.; Zhang, Z.; Yu, J.; Zhou, J.; Yin, X.; Yang, L.; Geng, R.; Zhu, R.; Zhang, F.; Tang, W. . Dithieno[3,2-b:2′,3′-d]pyrrol fused nonfullerene acceptors enabling over 13% efficiency for organic solar cells . Adv. Mater. , 2018 . 30 1 -8. .
Lin, Y.; Zhao, F.; He, Q.; Huo, L.; Wu, Y.; Parker, T. C.; Ma, W.; Sun, Y.; Wang, C.; Zhu, D.; Heeger, A. J.; Marder, S. R.; Zhan, X. . High-performance electron acceptor with thienyl side chains for organic photovoltaics . J. Am. Chem. Soc. , 2016 . 138 4955 -4961 . DOI:10.1021/jacs.6b02004http://doi.org/10.1021/jacs.6b02004 .
Hu, H.; Jiang, K.; Yang, G.; Liu, J.; Li, Z.; Lin, H.; Liu, Y.; Zhao, J.; Zhang, J.; Huang, F.; Qu, Y.; Ma, W.; Yan, H. . Terthiophene-based D-A polymer with an asymmetric arrangement of alkyl chains that enables efficient polymer solar cells . J. Am. Chem. Soc. , 2015 . 137 14149 -14157 . DOI:10.1021/jacs.5b08556http://doi.org/10.1021/jacs.5b08556 .
Liu, Q.; Xiao, Z.; Li, T.; Yang, S.; You, W.; Wang, M.; Ding, L. . Understanding the side-chain effects on A-D-A acceptors: in-plane and out-of-plane . Mater. Chem. Front. , 2018 . 2 1563 -1567 . DOI:10.1039/C8QM00238Jhttp://doi.org/10.1039/C8QM00238J .
Feng, H.; Song, X.; Zhang, M.; Yu, J.; Zhang, Z.; Geng, R.; Yang, L.; Liu, F.; Baran, D.; Tang, W. . Side chain engineering on dithieno[3,2-b:2,3-d]pyrrol fused electron acceptors for efficient organic solar cells . Mater. Chem. Front. , 2019 . 3 702 -708 . DOI:10.1039/C8QM00669Ehttp://doi.org/10.1039/C8QM00669E .
Li, Y.; Zhong, L.; Gautam, B.; Bin, H.; Lin, J.; Wu, F.; Zhang, Z.; Jiang, Z.; Zhang, Z.; Gundogdu, K.; Li, Y.; Liao, L. . A near-infrared non-fullerene electron acceptor for high performance polymer solar cells . Energy Environ. Sci. , 2017 . 10 1610 -1620 . DOI:10.1039/C7EE00844Ahttp://doi.org/10.1039/C7EE00844A .
Warnan, J.; Cabanetos, C.; El Labban, A.; Hansen, M. R.; Tassone, C.; Toney, M. F.; Beaujuge, P. M. . Ordering effects in benzo[1,2-b:4,5-b′]difuran-thieno[3,4-c]pyrrole-4,6-dione polymers with <7% solar cell efficiency . Adv. Mater. , 2014 . 26 4357 -4362 . DOI:10.1002/adma.201305344http://doi.org/10.1002/adma.201305344 .
Li, Y.; Lin, J. D.; Che, X.; Qu, Y.; Liu, F.; Liao, L. S.; Forrest, S. R. . High efficiency near-infrared and semitransparent non-fullerene acceptor organic photovoltaic cells . J. Am. Chem. Soc. , 2017 . 139 17114 -17119 . DOI:10.1021/jacs.7b11278http://doi.org/10.1021/jacs.7b11278 .
Shi, X.; Chen, J.; Gao, K.; Zuo, L.; Yao, Z.; Liu, F.; Tang, J.; Jen, A. K. Y. . Terthieno[3,2-b]thiophene (6T) based low bandgap fused-ring electron acceptor for highly efficient solar cells with a high short-circuit current density and low open-circuit voltage loss . Energy Mater. , 2018 . 8 2 -9. .
Brown, P. J.; Thomas, D. S.; Köhler, A.; Wilson, J. S.; Kim, J. S.; Ramsdale, C. M.; Sirringhaus, H.; Friend, R. H. . Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene) . Phys. Rev. B Condens. Matter Mater. Phys. , 2003 . 67 1 -16. .
Li, W.; Cai, J.; Yan, Y.; Cai, F.; Li, S.; Gurney, R. S.; Liu, D.; McGettrick, J. D.; Watson, T. M.; Li, Z.; Pearson, A. J.; Lidzey, D. G.; Hou, J.; Wang, T. . Correlating three-dimensional morphology with function in PBDB-T:IT-M non-fullerene organic solar cells . Sol. RRL , 2018 . 2 1800114 DOI:10.1002/solr.201800114http://doi.org/10.1002/solr.201800114 .
Long, G.; Wu, B.; Solanki, A.; Yang, X.; Kan, B.; Liu, X.; Wu, D.; Xu, Z.; Wu, W. R.; Jeng, U. S.; Lin, J.; Li, M.; Wang, Y.; Wan, X.; Sum, T. C.; Chen, Y. . New insights into the correlation between morphology, excited state dynamics, and device performance of small molecule organic solar cells . Adv. Energy Mater. , 2016 . 6 1600961 DOI:10.1002/aenm.201600961http://doi.org/10.1002/aenm.201600961 .
Xiao, M.; Zhang, K.; Jin, Y.; Yin, Q.; Zhong, W.; Huang, F.; Cao, Y. . Low temperature processed high-performance thick film ternary polymer solar cell with enhanced stability . Nano Energy , 2018 . 48 53 -62 . DOI:10.1016/j.nanoen.2018.03.006http://doi.org/10.1016/j.nanoen.2018.03.006 .
Duan, C.; Zhong, C.; Liu, C.; Huang, F.; Cao, Y. . Highly efficient inverted polymer solar cells based on an alcohol soluble fullerene derivative interfacial modification material . Chem. Mater. , 2012 . 24 1682 -1689 . DOI:10.1021/cm300824hhttp://doi.org/10.1021/cm300824h .
Zhang, K.; Hu, Z.; Sun, C.; Wu, Z.; Huang, F.; Cao, Y. . Toward solution-processed high-performance polymer solar cells: from material design to device engineering . Chem. Mater. , 2017 . 29 141 -148 . DOI:10.1021/acs.chemmater.6b02802http://doi.org/10.1021/acs.chemmater.6b02802 .
Goh, C.; Kline, R. J.; McGehee, M. D.; Kadnikova, E. N.; Fŕchet, J. M. J. . Molecular-weight-dependent mobilities in regioregular poly(3-hexyl-thiophene) diodes . Appl. Phys. Lett. , 2005 . 86 122110 -3 . DOI:10.1063/1.1891301http://doi.org/10.1063/1.1891301 .
Fan, B.; Du, X.; Liu, F.; Zhong, W.; Ying, L.; Xie, R.; Tang, X.; An, K.; Xin, J.; Li, N.; Ma, W.; Brabec, C. J.; Huang, F.; Cao, Y. . Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics . Nat. Energy , 2018 . 3 1051 -1058 . DOI:10.1038/s41560-018-0263-4http://doi.org/10.1038/s41560-018-0263-4 .
Koster, L. J. A.; Mihailetchi, V. D.; Ramaker, R.; Blom, P. W. M. . Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells . Appl. Phys. Lett. , 2005 . 86 123509 DOI:10.1063/1.1889240http://doi.org/10.1063/1.1889240 .
Cowan, S. R.; Roy, A.; Heeger, A. J. . Recombination in polymer-fullerene bulk heterojunction solar cells . Phys. Rev. B Condens. Matter Mater. Phys. , 2010 . 82 1 -36. .
Hexemer, A.; Bras, W.; Glossinger, J.; Schaible, E.; Gann, E.; Kirian, R.; MacDowell, A.; Church, M.; Rude, B.; Padmore, H. . A SAXS/WAXS/GISAXS beamline with multilayer monochromator . J. Phys. Conf. Ser. , 2010 . 247 012007 DOI:10.1088/1742-6596/247/1/012007http://doi.org/10.1088/1742-6596/247/1/012007 .
0
浏览量
2
Downloads
1
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621