FOLLOWUS
a.State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
b.State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
c.Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
chenh@suda.edu.cn (H.C.)
huliang@suda.edu.cn (L.H.)
Published:01 December 2024,
Published Online:31 October 2024,
Received:26 June 2024,
Revised:19 August 2024,
Accepted:20 August 2024
Scan QR Code
Wang, Y. J.; Zhang, P.; Serpe, M. J.; Chen, H.; Hu, L. Interferometers utilizing reversible X-ray-induced chemical changes in poly(N-isopropylacrylamide) microgels. Chinese J. Polym. Sci. 2024, 42, 1915–1924
YA-JIE WANG, PING ZHANG, MICHAEL J SERPE, et al. Interferometers Utilizing Reversible X-ray-induced Chemical Changes in Poly(
Wang, Y. J.; Zhang, P.; Serpe, M. J.; Chen, H.; Hu, L. Interferometers utilizing reversible X-ray-induced chemical changes in poly(N-isopropylacrylamide) microgels. Chinese J. Polym. Sci. 2024, 42, 1915–1924 DOI: 10.1007/s10118-024-3223-4.
YA-JIE WANG, PING ZHANG, MICHAEL J SERPE, et al. Interferometers Utilizing Reversible X-ray-induced Chemical Changes in Poly(
X-ray responsive pNIPAm microgel-based interferometers are capable of showing tunable colors in response to 0-16 Gy X-rays. This feature enables interferometers to trigger drug release through X-ray stimulation.
Photonic materials
which react to light
have garnered interest due to their capability to exhibit adjustable structural colors. Typically
light targets the UV
visible
or near-IR spectrums. In this study
microgel-based photonic materials that are capable of reversibly responding to X-rays have been engineered. To accomplish this
azobenzene (Azo)-containing poly(
N
-isopropylacrylamide) (pNIPAm)-based microgels are synthesized. Subsequently
ZnS scintillator and Cr/Au are applied on each side of the poly(methyl methacrylate (PMMA) substrate. Subsequently
the Azo MG monolayer is deposited onto the Au surface
followed by the deposition of an additional layer of Cr/Au. This process generates ZnS/PMMA/Cr/Au/Azo MG/Cr/Au or ZnS/Au-Azo MG-Au structure. Functioning as a typical interferometer
ZnS/Au-Azo MG-Au demonstrates tunable colors based on the separation distance between the two Au layers. The ZnS scintillator can absorb and convert X-rays into UV light
initiating the transition of the Azo groups from a
trans
to a
cis
state. Consequently
this transition causes the Azo MG to swell. As Azo MG swells
the distance between the two Au layers increases
resulting in a red-shift of approximately 350 nm in the optical signal of the ZnS/Au-Azo MG-Au interferometer. Remarkably
this X-ray responsivity of the interferometer is reversible
as it returns to its initial state after being stored in the dark for 24 h. To demonstrate its capabilities
the ZnS/Au-Azo MG-Au interferometer successfully releases a drug when triggered by X-ray stimulation
thus validating its potential
. The microgel-based interferometers hold significant promise for applications in chemoradiotherapy
radiobiology
and actuators in space.
N-isopropylacrylamideMicrogelsInterferometersX-raysScintillators
Downs, F. G.; Lunn, D. J.; Booth, M. J.; Sauer, J. B.; Ramsay, W. J.; Klemperer, R. G.; Hawker, C. J.; Bayley, H. Multi-responsive hydrogel structures from patterned droplet networks.Nat. Chem.2020,12, 363−371..
Tang, L.; Wang, L.; Yang, X.; Fen, Y. Y.; Li, Y.; Feng, W. Poly(N-isopropylacrylamide)-based smart hydrogels: design, properties and applications.Prog. Mater. Sci.2021, 115..
Hu, L.; Zhang, Q.; Li, X.; Serpe, M. J. Stimuli-responsive polymers for sensing and actuation.Mater. Horizons2019,6, 1774−1793..
Tian, B. R.; Liu, J. Y. Smart stimuli-responsive chitosan hydrogel for drug delivery: a review.Int. J. Biol. Macromol.2023,235, 123902..
Jochum, F. D.; Theato, P. Temperature- and light-responsive smart polymer materials.Chem. Soc. Rev.2013,42, 7468−7483..
ter Schiphorst, J.; Melpignano, G. G.; Amirabadi, H. E.; Houben, M.; Bakker, S.; den Toonder, J. M. J.; Schenning, A. Photoresponsive passive micromixers based on spiropyran size-tunable hydrogels.Macromol. Rapid Commun.2018,39, 1700086..
Ma, C. X.; Le, X. X.; Tang, X. L.; He, J.; Xiao, P.; Zheng, J.; Xiao, H.; Lu, W.; Zhang, J. W.; Huang, Y. J.; Chen, T. A multiresponsive anisotropic hydrogel with macroscopic 3d complex deformations.Adv. Funct. Mater.2016,26, 8670−8676..
Yang, J. Y.; Huang, W. T.; Peng, K. L.; Cheng, Z. K.; Lin, L. Z.; Yuan, J. J.; Sun, Y.; Cho, N. J.; Chen, Y. Versatile agar-zwitterion hybrid hydrogels for temperature self-sensing and electro-responsive actuation.Adv. Funct. Mater.2024,34, 2313725..
Rotjanasuworapong, K.; Thummarungsan, N.; Lerdwijitjarud, W.; Sirivat, A. Facile formation of agarose hydrogel and electromechanical responses as electro-responsive hydrogel materials in actuator applications.Carbohydr. Polym.2020,247, 116709..
Sung, B.; Kim, M. H.; Abelmann, L. Magnetic microgels and nanogels: physical mechanisms and biomedical applications.Bioeng. Transl. Med.2021,6, e10190..
Ji, W.; Wu, Q.; Han, X.; Zhang, W.; Wei, W.; Chen, L.; Li, L.; Huang, W. Photosensitive hydrogels: from structure, mechanisms, design to bioapplications.Sci. China Life Sciences2020,63, 1813−1828..
Lu, D.; Zhu, M.; Wu, S.; Wang, W.; Lian, Q.; Saunders, B. R. Triply responsive coumarin-based microgels with remarkably large photo-switchable swelling.Polym. Chem.2019,10, 2516−2526..
Jelken, J.; Jung, S.-H.; Lomadze, N.; Gordievskaya, Y. D.; Kramarenko, E. Y.; Pich, A.; Santer, S. Tuning the volume phase transition temperature of microgels by light.Adv. Funct. Mater.2022,32, 2107946..
Wang, J.; Zhang, X.; Zhang, S.; Kang, J.; Guo, Z.; Feng, B.; Zhao, H.; Luo, Z.; Yu, J.; Song, W.; Wang, S. Semi-convertible hydrogel enabled photoresponsive lubrication.Matter2021,4, 675−687..
Kim, Y.; Jeong, D.; Shinde, V. V.; Hu, Y.; Kim, C.; Jung, S. Azobenzene-grafted carboxymethyl cellulose hydrogels with photo-switchable, reduction-responsive and self-healing properties for a controlled drug release system.Int. J. Biol. Macromol.2020,163, 824−832..
Liu, H.; Zhang, L.; Huang, J.; Mao, J.; Chen, Z.; Mao, Q.; Ge, M.; Lai, Y. Smart surfaces with reversibly switchable wettability: concepts, synthesis and applications.Adv. Colloid Interface Sci.2022,300, 102584..
Wu, K.; Sun, J.; Ma, Y.; Wei, D.; Lee, O.; Luo, H.; Fan, H. Spatiotemporal regulation of dynamic cell microenvironment signals based on an azobenzene photoswitch.J. Mat. Chem. B2020,8, 9212−9226..
Wu, K.; Wu, X.; Zhang, Y.; Chen, S.; Qiao, Z.; Wei, D.; Sun, J.; Fan, H. Semiconvertible hyaluronic hydrogel enabled red-light-responsive reversible mechanics, adhesion, and self-healing.Biomacromolecules2022,23, 1030−1040..
Jiang, J.; Xu, S.; Ma, H.; Li, C.; Huang, Z. Photoresponsive hydrogel-based soft robot: a review.Mater. Today Bio2023,20, 100657..
Li, L.; Scheiger, J. M.; Levkin, P. A. Design and applications of photoresponsive hydrogels.Adv. Mater.2019,31, 1807333..
Zhang, P.; Ma, X.; Zhang, C.; Balasuriya, N.; Serpe, M. J.; Chen, H.; Hu, L. X-ray triggered color-tunable microgel-based interferometers for radiation dose sensing.Chem. Eng. J.2023,464, 142519..
Cao, W.; Zhang, X.; Miao, X.; Yang, Z.; Xu, H.γ-Ray-responsive supramolecular hydrogel based on a diselenide-containing polymer and a peptide.Angew. Chem. Int. Ed. 2013, 52, 6233-6237..
Gur, D.; Leshem, B.; Farstey, V.; Oron, D.; Addadi, L.; Weiner, S. Light-induced color change in the sapphirinid copepods: tunable photonic crystals.Adv. Funct. Mater.2016,26, 1393−1399..
Li, S.; Zeng, Y.; Hou, W.; Wan, W.; Zhang, J.; Wang, Y.; Du, X.; Gu, Z. Photo-responsive photonic hydrogel:in situmanipulation and monitoring of cell scaffold stiffness.Mater. Horizons2020,7, 2944−2950..
Xu, C.; Yang, D.; Luo, L.; Ma, D.; Huang, S. Dual-modal invisible photonic crystal prints from photo/water responsive photonic crystals.Adv. Photonics Res.2021,2, 2000197..
Kamenjicki, M.; Lednev, I. K.; Mikhonin, A.; Kesavamoorthy, R.; Asher, S. A. Photochemically controlled photonic crystals.Adv. Funct. Mater.2003,13, 774−780..
Yang, X.; Jin, H.; Tao, X.; Yao, Y.; Xie, Y.; Lin, S. Photo-responsive azobenzene-containing inverse opal films for information security.Adv. Funct. Mater.2023,33, 2304424..
Liu, J.; Wang, Y.; Wang, J.; Zhou, G.; Ikeda, T.; Jiang, L. Inkless rewritable photonic crystals paper enabled by a light-driven azobenzene mesogen switch.ACS Appl. Mater. Interfaces2021,13, 12383−12392..
Sun, Y.; Long, Y.; Cai, H.; Hou, K.; Li, X.; Zhang, X.; Li, J.; Song, K. Photochromic supramolecular photonic crystals based on host-guest interactions.J. Mater. Chem. C2021,9, 16925−16928..
Sorrell, C. D.; Serpe, M. J. Reflection order selectivity of color-tunable poly(N-isopropylacrylamide) microgel based etalons.Adv. Mater.2011,23, 4088−4092..
Sorrell, C. D.; Carter, M. C. D.; Serpe, M. J. A “Paint-on” protocol for the facile assembly of uniform microgel coatings for color tunable etalon fabrication.ACS Appl. Mater. Interfaces2011,3, 1140−1147..
Hu, L.; Gao, S.; Ding, X.; Wang, D.; Jiang, J.; Jin, J.; Jiang, L. Photothermal-responsive single-walled carbon nanotube-based ultrathin membranes for on/off switchable separation of oil-in-water nanoemulsions.ACS Nano2015,9, 4835−4842..
Zarzar, L. D.; Kim, P.; Aizenberg, J. Bio-inspired design of submerged hydrogel-actuated polymer microstructures operating in response to pH.Adv. Mater.2011,23, 1442−1446..
Ding, Y.; Duan, Y.; Yang, F.; Xiong, Y.; Guo, S. High-transmittance pNIPAm gel smart windows with lower response temperature and stronger solar regulation.Chem. Eng. J.2023,460, 141572..
Zhang, Q. M.; Li, X.; Islam, M. R.; Wei, M.; Serpe, M. J. Light switchable optical materials from azobenzene crosslinked poly(N-isopropylacrylamide)-based microgels.J. Mater. Chem. C2014,2, 6961−6965..
Deng, H.; Lin, L.; Wang, S.; Yu, G.; Zhou, Z.; Liu, Y.; Niu, G.; Song, J.; Chen, X. X-ray-controlled bilayer permeability of bionic nanocapsules stabilized by nucleobase pairing interactions for pulsatile drug delivery.Adv. Mater.2019,31, 1903443..
0
Views
39
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution