

FOLLOWUS
Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
yunding@ecust.edu.cn (Y.D.)
hagmhsn@ecust.edu.cn (A.H.)
Published:01 December 2024,
Published Online:07 November 2024,
Received:04 July 2024,
Revised:03 August 2024,
Accepted:15 August 2024
Scan QR Code
Tian, D.; Wang, J.; Huang, X.; Ding, Y.; Hu, A. Understanding broad polydispersity in step-growth polymerization via catalyst competition mechanism. Chinese J. Polym. Sci. 2024, 42, 1897–1904
DONGLAI TIAN, JIE WANG, XIAOHUA HUANG, et al. Understanding Broad Polydispersity in Step-growth Polymerization
Tian, D.; Wang, J.; Huang, X.; Ding, Y.; Hu, A. Understanding broad polydispersity in step-growth polymerization via catalyst competition mechanism. Chinese J. Polym. Sci. 2024, 42, 1897–1904 DOI: 10.1007/s10118-024-3217-2.
DONGLAI TIAN, JIE WANG, XIAOHUA HUANG, et al. Understanding Broad Polydispersity in Step-growth Polymerization
We proposed a catalyst competition mechanism through experimental validation and computational simulations
successfully elucidating the origins of broad molecular weight distributions in step-growth polymerization
which holds significant guidance for the synthesis and processing of conjugated polymers.
Conjugated polymers are mainly synthesized by cross-coupling polymerizations catalyzed with transition metal (Pd
Ni) catalysts through step-growth polymerization (SGP) mechanism. According to the classical theory of SGP
the polymer dispersion index (
Ð
) of the synthesized polymers will never be higher than 2. However
the cases where conjugated polymers synthesized with
Ð
value far exceeding 2 are very common in reality
which severely limits their processing property
performance and applications. To investigat
e the reason behind the
Ð
value deviation from the theoretical value of SGP
direct arylation polycondensation (DArP) of 2-bromo-3-hexylthiophene (3HT) was chosen as the model reaction
and the reaction process was tracked using gel permeation chromatography analysis. When Pd(OAc)
2
was used as the catalyst
the
Ð
value linearly increased with the increase of the weight-average molecular weight (
M
w
) of polymer (P3HT) after a short period and reached up to 7.2 at prolonged reaction time. Scanning transmission electron microscopic images of the reaction mixture showed the fibril-like aggregation of P3HT and assembling of Pd species in P3HT aggregates. A catalyst competition mechanism was thus proposed
together with numerical calculation
giving a good fitting to the experimental results
which is believed to have far-reaching significance for guiding the design
synthesis and processing of conjugated polymers.
Step-growth polymerizationConjugated polymerPolymer dispersion indexCatalyst competition mechanism
Flory, P. J.Principles of Polymer Chemistry. Cornell University Press: Ithaca, New York, 1953 , p. 688..
Qiu, Z.; Hammer, B. A. G.; Müllen, K. Conjugated polymers – Problems and promises.Prog. Polym. Sci.2020,100, 101179..
Verheyen, L.; Leysen, P.; Van Den Eede, M. P.; Ceunen, W.; Hardeman, T.; Koeckelberghs, G. Advances in the controlled polymerization of conjugated polymers.Polymer2017,108, 521−546..
Nadgorny, M.; Gentekos, D. T.; Xiao, Z.; Singleton, S. P.; Fors, B. P.; Connal, L. A. Manipulation of molecular weight distribution shape as a new strategy to control processing parameters.Macromol. Rapid Commun.2017,38, 1700352..
Nichetti, D.; Manas-Zloczower, I. Influence of molecular parameters on material processability in extrusion processes.Polym.Eng. Sci.1999,39, 887−895..
Lu, L.; Zheng, T.; Xu, T.; Zhao, D.; Yu, L. Mechanistic studies of effect of dispersity on the photovoltaic performance of PTB7 polymer solar cells.Chem. Mater.2015,27, 537−543..
Carothers, W. H. Polymers and polyfunctionality.Trans. Faraday Soc.1936,32, 39−49..
Flory, P. J. Molecular size distribution in linear condensation polymers1.J. Am. Chem. Soc.1936,58, 1877−1885..
Sui, Y.; Deng, Y.; Du, T.; Shi, Y.; Geng, Y. Design strategies of n-type conjugated polymers for organic thin-film transistors.Mater. Chem. Front.2019,3, 1932−1951..
Sui, Y.; Shi, Y.; Deng, Y.; Li, R.; Bai, J.; Wang, Z.; Dang, Y.; Han, Y.; Kirby, N.; Ye, L.; Geng, Y. Direct arylation polycondensation of chlorinated thiophene derivatives to high-mobility conjugated polymers.Macromolecules2020,53, 10147−10154..
Lai, Y. Y.; Yang, H. R.; Lee, H. T.; Tsai, T. L.; Sun, H. S.In vitroandin silicostudies on the base effect in palladium-catalyzed direct arylation.Asian J. Org. Chem. 2020, 9, 296-302..
Li, Z.; Shi, Q.; Ma, X.; Li, Y.; Wen, K.; Qin, L.; Chen, H.; Huang, W.; Zhang, F.; Lin, Y.; Marks, T. J.; Huang, H. Efficient room temperature catalytic synthesis of alternating conjugated copolymersviaC-S bond activation.Nat. Commun.2022,13, 144−144..
Yao, X. Q.; Wang, Y. S.; Wang, J. Palladium-catalyzed carbene coupling polymerization: synthesis of E-poly(arylene vinylene)s.Chem. Commun.2022,58, 4032−4035..
Ye, L.; Thompson, B. C. Improving the efficiency and sustainability of catalysts for direct arylation polymerization (DArP).J. Polym. Sci.2022,60, 393−428..
Kleybolte, M. E.; Vagin, S. I.; Rieger, B. High-molecular-weight bisalkoxy-substituted poly(para)phenylenes by kumada polymerization.Macromolecules2022,55, 5361−5370..
Collier, G. S.; Wilkins, R.; Tomlinson, A. L.; Reynolds, J. R. Exploring isomeric effects on optical and electrochemical properties of red/orange electrochromic polymers.Macromolecules2021,54, 1677−1692..
Hwang, K.; Lee, M. H.; Kim, J.; Kim, Y. J.; Kim, Y.; Hwang, H.; Kim, I. B.; Kim, D. Y. 3,4-Ethylenedioxythiophene-based isomer-free quinoidal building block and conjugated polymers for organic field-effect transistors.Macromolecules 2020, 53, 1977-1987..
Shida, N.; Ninomiya, K.; Takigawa, N.; Imato, K.; Ooyama, Y.; Tomita, I.; Inagi, S. Diversification of conjugated polymersviapostpolymerization nucleophilic aromatic substitution reactions with sulfur-, oxygen-, and nitrogen-based nucleophiles.Macromolecules2021,54, 725−735..
Chen, T. A.; Wu, X.; Rieke, R. D. Regiocontrolled synthesis of poly(3-alkylthiophenes) mediated by rieke zinc: their characterization and solid-state properties.J. Am. Chem. Soc.1995,117, 233−244..
Jacobson, H.; Beckmann, C. O.; Stockmayer, W. H. Intramolecular reaction in polycondensations. II. Ring-chain equilibrium in polydecamethylene adipate.J. Chem. Phys.1950,18, 1607−1612..
Jacobson, H.; Stockmayer, W. H. Intramolecular reaction in polycondensations. I. The theory of linear systems.J. Chem. Phys.1950,18, 1600−1606..
Stanford, J. L.; Stepto, R. F. T.; Waywell, D. R. Rate theory of irreversible linear random polymerisation. Part 2. Application to intramolecular reaction in A-A + B-B type polymerisations.J. Chem. Soc., Faraday Trans. 11975,71, 1308−1326..
Gordon, M.; Temple, W. B. The graph-like state of molecules. III. Ring-chain competition kinetics in linear polymerisation reactions.Makromol. Chem.1972,160, 263−276..
Gordon, M.; Temple, W. B. Ring-chain competition kinetics in linear polymers.Makromol. Chem.1972,152, 277−289..
Romero-Hernandez, J. E.; Cruz-Rosado, A.; Vivaldo-Lima, E.; Palacios-Alquisira, J.; Zolotukhin, M. G. Analysis of the competition between cyclization and linear chain growth in kinetically controlled A(2) + B(2) step-growth polymerizations using modeling tools.Macromol. Theory Simul.2020,29, 2000050..
Li, Y.; Wang, X.; He, Z.; Johnson, M.; A, S.; Lara-Sáez, I.; Lyu, J.; Wang, W. 3D macrocyclic structure boosted gene delivery: multi-cyclic poly(β-amino ester)s from step growth polymerization.J. Am. Chem. Soc. 2023, 145, 17187-17200..
Luo, S.; Xu, Z.; Zhong, F.; Li, H.; Chen, L. Doping-induced charge transfer in conductive polymers.Chin. Chem. Lett.2024,35, 109014..
Miyakoshi, R.; Yokoyama, A.; Yokozawa, T. Catalyst-transfer polycondensation. Mechanism of Ni-catalyzed chain-growth polymerization leading to well-defined poly(3-hexylthiophene).J. Am. Chem. Soc.2005,127, 17542−17547..
Trznadel, M.; Pron, A.; Zagorska, M.; Chrzaszcz, R.; Pielichowski, J. Effect of molecular weight on spectroscopic and spectroelectrochemical properties of regioregular poly(3-hexylthiophene).Macromolecules1998,31, 5051−5058..
McCulloch, B.; Ho, V.; Hoarfrost, M.; Stanley, C.; Do, C.; Heller, W. T.; Segalman, R. A. Polymer chain shape of poly(3-alkylthiophenes) in solution using small-angle neutron scattering.Macromolecules2013,46, 1899−1907..
Nagai, M.; Huang, J.; Zhou, T.; Huang, W. Effect of molecular weight on conformational characteristics of poly(3-hexyl thiophene).J. Polym. Sci., Part B: Polym. Phys.2017,55, 1273−1277..
Gu, K.; Onorato, J.; Xiao, S. S.; Luscombe, C. K.; Loo, Y. L. Determination of the molecular weight of conjugated polymers with diffusion-ordered NMR spectroscopy.Chem. Mater.2018,30, 570−576..
Pouliot, J.-R.; Wakioka, M.; Ozawa, F.; Li, Y.; Leclerc, M. Structural analysis of poly(3-hexylthiophene) preparedviadirect heteroarylation polymerization.Macrom. Chem. Phys.2016,217, 1493−1500..
O'Brien, C. J.; Kantchev, E. A. B.; Valente, C.; Hadei, N.; Chass, G. A.; Lough, A.; Hopkinson, A. C.; Organ, M. G. Easily prepared air- and moisture-stable Pd-NHC (NHC=N-heterocyclic carbene) complexes: a reliable, user-friendly, highly active palladium precatalyst for the Suzuki-Miyaura reaction.Chem. Eur. J.2006,12, 4743−4748..
Wu, Y.; Ding, M.; Wang, J.; Zhao, B.; Wu, Z.; Zhao, P.; Tian, D.; Ding, Y.; Hu, A. Controlled step-growth polymerization.CCS Chem.2020,2, 64−70..
Phan, N. T. S.; Van Der Sluys, M.; Jones, C. W. On the nature of the active species in palladium catalyzed Mizoroki-Heck and Suzuki-Miyaura Couplings--homogeneous or heterogeneous catalysis, a critical review.Adv. Synth. Catal. 2006, 348, 609-679..
Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. An overview ofN-heterocyclic carbenes.Nature2014,510, 485−96..
Lo, C. K.; Wolfe, R. M. W.; Reynolds, J. R. From monomer to conjugated polymer: a perspective on best practices for synthesis.Chem. Mater.2021,33, 4842−4852..
Zhang, P.; Weng, Z.; Guo, J.; Wang, C. Solution-dispersible, colloidal, conjugated porous polymer networks with entrapped palladium nanocrystals for heterogeneous catalysis of the Suzuki-Miyaura coupling reaction.Chem. Mater.2011,23, 5243−5249..
Arduengo, A. J. Looking for stable carbenes: the difficulty in starting anew.Acc. Chem. Res.1999,32, 913−921..
Arduengo, A. J., III; Harlow, R. L.; Kline, M. A stable crystalline carbene.J. Am. Chem. Soc.1991,113, 361−363..
Xu, S. J.; Song, K. P.; Li, T.; Tan, B. Palladium catalyst coordinated in knittingN-heterocyclic carbene porous polymers for efficient Suzuki-Miyaura coupling reactions.J. Mater. Chem. A2015,3, 1272−1278..
Wang, W.; Cui, L.; Sun, P.; Shi, L.; Yue, C.; Li, F. ReusableN-heterocyclic carbene complex catalysts and beyond: a perspective on recycling strategies.Chem. Rev.2018,118, 9843−9929..
Kantchev, E. A. B.; O'Brien, C. J.; Organ, M. G. Palladium complexes ofN-heterocyclic carbenes as catalysts for cross-coupling reactions—a synthetic chemist's perspective.Angew. Chem. Int. Ed.2007,46, 2768−2813..
Wang, J.; Tian, D.; Zhang, X.; Pan, H.; Ding, Y.; Wang, G.; Hu, A. Synthesis of narrowly distributedα,ω-bifunctionalized conjugated polymers.Macromolecules2023,56, 5835−5842..
Zhang, Z.; Wang, Z.; He, S.; Wang, C.; Jin, M.; Yin, Y. Redox reaction induced Ostwald ripening for size- and shape-focusing of palladium nanocrystals.Chem. Sci.2015,6, 5197−5203..
Wang, D. P.; Yuan, Y.; Mardiyati, Y.; Bubeck, C.; Koynov, K. From single chains to aggregates, how conjugated polymers behave in dilute solutions.Macromolecules2013,46, 6217−6224..
Kwok, J. J.; Park, K. S.; Patel, B. B.; Dilmurat, R.; Beljonne, D.; Zuo, X. B.; Lee, B.; Diao, Y. Understanding solution state conformation and aggregate structure of conjugated polymers via small angle X-ray scattering.Macromolecules2022,55, 4353−4366..
Denisova, E. A.; Kostyukovich, A. Y.; Fakhrutdinov, A. N.; Korabelnikova, V. A.; Galushko, A. S.; Ananikov, V. P. “Hidden” nanoscale catalysis in alkyne hydrogenation with well-defined molecular Pd/NHC complexes.ACS Catal. 2022, 12, 6980-6996..
Deraedt, C.; Astruc, D. “Homeopathic” palladium nanoparticle catalysis of cross carbon–carbon coupling reactions.Acc. Chem. Res. 2013, 47, 494-503..
Xu, J.; Wu, H.-C.; Mun, J.; Ning, R.; Wang, W.; Wang, G. J. N.; Nikzad, S.; Yan, H.; Gu, X.; Luo, S.; Zhou, D.; Tok, J. B. H.; Bao, Z. Tuning conjugated polymer chain packing for stretchable semiconductors.Adv. Mater.2022,34, 2104747..
Villa, M.; Cannata, V.; Rosi, A.; Allegrini, P.; Sasso, M. WO9851646-A1; ZA9804039-A; AU9875302-A; NO9905528-A; EP981507-A1; CZ9904013-A3; SK9901539-A3; BR9808795-A; CN1255912-A; HU200002119-A2; NZ500565-A; US6239301-B1; MX9910410-A1; IT1291356-B; AU739778-B; JP2001524977-W; SK282370-B6; NO312509-B1; HU222599-B1; EP981507-B1; DE69825745-E; MX215483-B; CZ294236-B6; IL132561-A; ES2227832-T3; CN1092624-C; DE69825745-T2; RO119714-B1; CA2288647-C; EA2285-B1.
Rudenko, A. E.; Thompson, B. C. Optimization of direct arylation polymerization (DArP) through the identification and control of defects in polymer structure.J. Polym. Sci., Part A: Polym. Chem.2015,53, 135−147..
Kappaun, S.; Zelzer, M.; Bartl, K.; Saf, R.; Stelzer, F.; Slugovc, C. Preparation of poly(fluorene)s using trans-bis(dicyclohexylamine)palladium diacetate as a catalyst: scope and limitations.J. Polym. Sci., Part A: Polym. Chem.2006,44, 2130−2138..
Chinchilla, R.; Najera, C. The sonogashira reaction: a booming methodology in synthetic organic chemistry.Chem. Rev.2007,107, 874−922..
Rudenko, A. E.; Wiley, C. A.; Tannaci, J. F.; Thompson, B. C. Optimization of direct arylation polymerization conditions for the synthesis of poly(3-hexylthiophene).J. Polym. Sci., Part A: Polym. Chem.2013,51, 2660−2668..
Liversedge, I. A.; Higgins, S. J.; Giles, M.; Heeney, M.; McCulloch, I. Suzuki route to regioregular polyalkylthiophenes using Ir-catalysed borylation to make the monomer, and Pd complexes of bulky phosphanes as coupling catalysts for polymerisation.Tetra. Lett.2006,47, 5143−5146..
0
Views
9
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621