FOLLOWUS
a.School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
b.Jiangxi Province Key Laboratory of Flexible Electronics, Nanchang 330013, China
c.Jiangxi Provincial Engineering Research Center for Waterborne Coatings, Nanchang 330013, China
d.School of Materials and Energy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
e.Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, China
shuaichen@jxstnu.edu.cn (S.C.)
xuezexu@whu.edu.cn (Z.X.X.)
Published:01 December 2024,
Published Online:18 September 2024,
Received:18 May 2024,
Revised:22 June 2024,
Accepted:07 July 2024
Scan QR Code
Zhu, L.; Chen, S.; Zhou, M.; An, S. Y.; Liang, L. S.; Shen, Y. L.; Xue, Z. X. Regulation of mechanical properties of conductive polymer composites. Chinese J. Polym. Sci. 2024, 42, 1855–1880
LING ZHU, SHUAI CHEN, MENG ZHOU, et al. Regulation of Mechanical Properties of Conductive Polymer Composites. [J]. Chinese journal of polymer science, 2024, 42(12): 1855-1880.
Zhu, L.; Chen, S.; Zhou, M.; An, S. Y.; Liang, L. S.; Shen, Y. L.; Xue, Z. X. Regulation of mechanical properties of conductive polymer composites. Chinese J. Polym. Sci. 2024, 42, 1855–1880 DOI: 10.1007/s10118-024-3203-8.
LING ZHU, SHUAI CHEN, MENG ZHOU, et al. Regulation of Mechanical Properties of Conductive Polymer Composites. [J]. Chinese journal of polymer science, 2024, 42(12): 1855-1880. DOI: 10.1007/s10118-024-3203-8.
This paper systematically reviewed the progress of conductive polymer composites with different conductive fillers (metals and their oxides
carbon-based materials
intrinsically conductive polymers
MXenes
etc
.) relying on rich material forms (hydrogel
aerogel
fiber
film
elastomer) in terms of mechanical property regulation strategies and techniques.
Conductive polymer composites (CPCs) are widely used in the field of organic electronics as the material basis of high-performance devices
due to their obvious advantages including electrical conductivity
lightness
processability and so on. Research on CPCs has focused on the enhancement of their electrical features and the exploration of their application prospects from conventional fields to heated emerging areas like flexible
stretchable
wearable
biological and biomedical electronics
where their mechanical properties are quite critical to determine their practical device performances. Also
a main challenge to ensure their safety and reliability is on the synergistic enhancement of their electrical behavior and mechanical properties. Herein
we systematically review the research progress of CPCs with different conductive fillers (metals and their oxides
carbon-based materials
intrinsically conductive polymers
MXenes
etc
.) relying on rich material forms
(hydrogel
aerogel
fiber
film
elastomer
etc
.) in terms of mechanical property regulation strategies
mainly relying on optimized composite material systems and processing techniques. A summary and prospective overview of current issues and future developments in this field also has been presented.
Conductive polymerCompositeMechanical propertyElectrical conductivityOrganic electronics
Jiang, D.; Murugadoss, V.; Wang, Y.; Lin, J.; Ding, T.; Wang, Z.; Shao, Q.; Wang, C.; Liu, H.; Lu, N.; Wei, R.; Subramania, A.; Guo, Z. Electromagnetic interference shielding polymers and nanocomposites-a review.Polym. Rev.2019,59, 280−337..
Talikowska, M.; Fu, X. X.; Lisak, G. Application of conducting polymers to wound care and skin tissue engineering: a review.Biosens. Bioelectron.2019,135, 50−63..
Raj, G. K.; Singh, E.; Hani, U.; Ramesh, K. V. R. N. S.; Talath, S.; Garg, A.; Savadatti, K.; Bhatt, T.; Madhuchandra, K.; Osmani, R. A. M. Conductive polymers and composites-based systems: an incipient stride in drug delivery and therapeutics realm.J. Control Rel.2023,355, 709−729..
Meng, Q. F.; Cai, K. F.; Chen, Y. X.; Chen, L. D. Research progress on conducting polymer based supercapacitor electrode materials.Nano Energy2017,36, 268−285..
Choi, S.; Han, S. I.; Kim, D.; Hyeon, T.; Kim, D. H. High-performance stretchable conductive nanocomposites: materials, processes, and device applications.Chem. Soc. Rev.2019,48, 1566−1595..
Chen, J.; Zhu, Y.; Huang, J.; Zhang, J.; Pan, D.; Zhou, J.; Ryu, J. E.; Umar, A.; Guo, Z. Advances in responsively conductive polymer composites and sensing applications.Polym. Rev.2021,61, 157−193..
Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. Self-healable functional polymers and polymer-based composites.Prog. Polym. Sci.2023,144, 101724..
Tee, B. C. K.; Ouyang, J. Soft electronically functional polymeric composite materials for a flexible and stretchable digital future.Adv. Mater.2018,30, 1802560..
Dan, L.; Elias, A. L. Flexible and stretchable temperature sensors fabricated using solution-processable conductive polymer composites.Adv. Healthc. Mater.2020,9, 2000380..
Baker, C. O.; Huang, X.; Nelson, W.; Kaner, R. B. Polyaniline nanofibers: Broadening applications for conducting polymers.Chem. Soc. Rev.2017,46, 1510−1525..
Jin, X.; Song, L.; Yang, H.; Dai, C.; Xiao, Y.; Zhang, X.; Han, Y.; Bai, C.; Lu, B.; Liu, Q.; Zhao, Y.; Zhang, J.; Zhang, Z.; Qu, L. Stretchable supercapacitor at −30 °C.Energy Environ. Sci.2021,14, 3075−3085..
Huang, M. N.; Xie, L. S.; Wang, Y. J.; He, H. J.; Yu, H. B.; Cui, J. S.; Feng, X. G.; Lou, Z. N.; Xiong, Y. Efficient uranium electrochemical deposition with a functional phytic acid-doped polyaniline/graphite sheet electrode by adsorption-electrodeposition strategy.Chem. Eng. J.2023,457, 141221..
Bhadra, S.; Khastgir, D.; Singha, N. K.; Lee, J. H. Progress in preparation, processing and applications of polyaniline.Prog. Polym. Sci.2009,34, 783−810..
Kazemi, F.; Naghib, S. M.; Zare, Y.; Rhee, K. Y. Biosensing applications of polyaniline (PANI)-based nanocomposites: a review.Polym. Rev.2021,61, 553−597..
Chu, X.; Yang, W. Q.; Li, H. Recent advances in polyaniline-based micro-supercapacitors.Mater. Horiz.2023,10, 670−697..
Zhao, F.; Zhou, X.; Shi, Y.; Qian, X.; Alexander, M.; Zhao, X.; Mendez, S.; Yang, R.; Qu, L.; Yu, G. Highly efficient solar vapour generationviahierarchically nanostructured gels.Nat. Nanotechnol.2018,13, 489−495..
Jain, R.; Jadon, N.; Pawaiya, A. Polypyrrole based next generation electrochemical sensors and biosensors: a review.Trac-Trend Anal. Chem.2017,97, 363−373..
Yan, J.; Huang, Y.; Liu, X. D.; Zhao, X. X.; Li, T. H.; Zhao, Y.; Liu, P. B. Polypyrrole-based composite materials for electromagnetic wave absorption.Polym. Rev.2021,61, 646−687..
Hou, R. Z.; Miao, M.; Wang, Q. Y.; Yue, T.; Liu, H. F.; Park, H. S.; Qi, K.; Xia, B. Y. Integrated conductive hybrid architecture of metal-organic framework nanowire array on polypyrrole membrane for all-solid-state flexible supercapacitors.Adv. Energy Mater.2020,10, 1901892..
So, R. C.; Carreon-Asok, A. C. Molecular design, synthetic strategies, and applications of cationic polythiophenes.Chem. Rev.2019,119, 11442−11509..
Keene, S. T.; Laulainen, J. E. M.; Pandya, R.; Moser, M.; Schnedermann, C.; Midgley, P. A.; McCulloch, I.; Rao, A.; Malliaras, G. G. Hole-limited electrochemical doping in conjugated polymers.Nat. Mater.2023,22, 1121−1127..
Jaymand, M.; Hatamzadeh, M.; Omidi, Y. Modification of polythiophene by the incorporation of processable polymeric chains: recent progress in synthesis and applications.Prog. Polym. Sci.2015,47, 26−69..
Yang, C. Y.; Zhang, S. Q.; Hou, J. H. Low-cost and efficient organic solar cells based on polythiophene- and poly(thiophene vinylene)-related donors.Aggregate2022,3, e111..
Ma, H.; Sun, Z.; Jeong, M.; Yang, S.; Jeong, S.; Lee, S.; Cho, Y.; Park, J.; Park, J.; Yang, C. Ordering structure control of polythiophene-based donors for high-efficiency organic solar cells.Chem. Eng. J.2023,474, 145531..
Li, J.; Cao, J.; Lu, B.; Gu, G. 3D-printed PEDOT:PSS for soft robotics.Nat. Rev. Mater.2023,8, 604−622..
Zhao, Q.; Liu, J.; Wu, Z.; Xu, X.; Ma, H.; Hou, J.; Xu, Q.; Yang, R.; Zhang, K.; Zhang, M.; Yang, H.; Peng, W.; Liu, X.; Zhang, C.; Xu, J.; Lu, B. Robust PEDOT:PSS-based hydrogel for highly efficient interfacial solar water purification.Chem. Eng. J.2022,442, 136284..
Zhou, T.; Yuk, H.; Hu, F.; Wu, J.; Tian, F.; Roh, H.; Shen, Z.; Gu, G.; Xu, J.; Lu, B.; Zhao, X. 3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces.Nat. Mater.2023,22, 895−902..
Yu, J. W.; Tian, F. J.; Wang, W.; Wan, R. T.; Cao, J.; Chen, C.; Zhao, D. B.; Liu, J. C.; Zhong, J.; Wang, F. C.; Liu, Q.; Xu, J. K.; Lu, B. Y. Design of highly conductive, intrinsically stretchable, and 3D printable PEDOT:PSS hydrogels via PSS-chain engineering for bioelectronics.Chem. Mater.2023,35, 5936−5944..
Wang, T.; Bao, Y. W.; Zhuang, M. D.; Li, J. C.; Chen, J. C.; Xu, H. X. Nanoscale engineering of conducting polymers for emerging applications in soft electronics.Nano Res.2021,14, 3112−3125..
Xu, S.; Shi, X. L.; Dargusch, M.; Di, C.; Zou, J.; Chen, Z. G. Conducting polymer-based flexible thermoelectric materials and devices: From mechanisms to applications.Prog. Mater. Sci.2021,121, 100840..
Wu, Z. X.; Zhao, Q.; Luo, X. Y.; Ma, H. D.; Zheng, W. Q.; Yu, J. W.; Zhang, Z. L.; Zhang, K. Y.; Qu, K.; Yang, R. P.; Jian, N. N.; Hou, J.; Liu, X. M.; Xu, J. K.; Lu, B. Y. Low-cost fabrication of high-performance fluorinated polythiophene-based Vis-NIR electrochromic devices toward deformable display and camouflage.Chem. Mater.2022,34, 9923−9933..
Huang, Y.; Peng, C.; Li, Y.; Yang, Y.; Feng, W. Elastomeric polymers for conductive layers of flexible sensors: materials, fabrication, performance, and applications.Aggregate2023,4, e319..
Zhao, Q.; Wu, Z. X.; Xu, X. Y.; Yang, R. P.; Ma, H. D.; Xu, Q. L.; Zhang, K. Y.; Zhang, M. M.; Xu, J. K.; Lu, B. Y. Design of poly(3,4-ethylenedioxythiophene): polystyrene sulfonate-polyacrylamide dual network hydrogel for long-term stable, highly efficient solar steam generation.Sep. Purif. Technol.2022,300, 121889..
Wang, M.; Tang, X. H.; Cai, J. H.; Wu, H.; Shen, J. B.; Guo, S. Y. Construction, mechanisms and perspectives of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: a review.Carbon2021,177, 377−402..
Wang, Y. Q.; Ding, Y.; Guo, X. L.; Yu, G. H. Conductive polymers for stretchable supercapacitors.Nano Res.2019,12, 1978−1987..
Wang, J. F.; Wang, J. R.; Kong, Z.; Lv, K. L.; Teng, C.; Zhu, Y. Conducting-polymer-based materials for electrochemical energy conversion and storage.Adv. Mater.2017,29, 1703044..
Han, X. T.; Xiao, G. C.; Wang, Y. C.; Chen, X. N.; Duan, G. G.; Wu, Y. Z.; Gong, X.; Wang, H. X. Design and fabrication of conductive polymer hydrogels and their applications in flexible supercapacitors.J. Mater. Chem. A2020,8, 23059−23095..
Xiang, H. Y.; Deng, N. P.; Zhao, H. J.; Wang, X. X.; Wei, L. Y.; Wang, M.; Cheng, B. W.; Kang, W. M. A review on electronically conducting polymers for lithium-sulfur battery and lithium-selenium battery: progress and prospects.J. Energy Chem.2021,58, 523−556..
Zhu, J. D.; Zhang, Z.; Zhao, S.; Westover, A. S.; Belharouak, I.; Cao, P. F. Single-ion conducting polymer electrolytes for solid-state lithium-metal batteries: design, performance, and challenges.Adv. Energy Mater.2021,11, 2003836..
Nezakati, T.; Seifalian, A.; Tan, A.; Seifalian, A. M. Conductive polymers: opportunities and challenges in biomedical applications.Chem. Rev.2018,118, 6766−6843..
Jia, M.; Rolandi, M. Soft and ion-conducting materials in bioelectronics: from conducting polymers to hydrogels.Adv. Healthc. Mater.2020,9, e1901372..
Yu, J. W.; Wan, R. T.; Tian, F. J.; Cao, J.; Wang, W.; Liu, Q.; Yang, H. J.; Liu, J. C.; Liu, X. M.; Lin, T.; Xu, J. K.; Lu, B. Y. 3D printing of robust high-performance conducting polymer hydrogel-based electrical bioadhesive interface for soft bioelectronics.Small2023,20, 2308778..
Schöbel, L.; Boccaccini, A. R. A review of glycosaminoglycan-modified electrically conductive polymers for biomedical applications.Acta Biomaterialia2023,169, 45−65..
Green, R.; Abidian, M. R. Conducting polymers for neural prosthetic and neural interface applications.Adv. Mater.2015,27, 7620−7637..
Xue, Y.; Chen, X. M.; Wang, F. C.; Lin, J. S.; Liu, J. Mechanically-compliant bioelectronic interfaces through fatigue-resistant conducting polymer hydrogel coating.Adv. Mater.2023,35, 2304095..
Yan, Y.; Jiang, Y.; Ng, E. L. L.; Zhang, Y.; Owh, C.; Wang, F.; Song, Q.; Feng, T.; Zhang, B.; Li, P.; Loh, X. J.; Chan, S. Y.; Chan, B. Q. Y. Progress and opportunities in additive manufacturing of electrically conductive polymer composites.Mater. Today Adv.2023,17, 100333..
Peng, S.; Yu, Y.; Wu, S.; Wang, C. H. Conductive polymer nanocomposites for stretchable electronics: material selection, design, and applications.ACS Appl. Mater. Interfaces2021,13, 43831−43854..
Shen, Y.; Yang, W.; Hu, F.; Zheng, X.; Zheng, Y.; Liu, H.; Algadi, H.; Chen, K. Ultrasensitive wearable strain sensor for promising application in cardiac rehabilitation.Adv. Compos. Hybrid. Mater.2023,6, 21..
Hu, G.; Wu, C.; Wang, Q.; Dong, F.; Xiong, Y. Ultrathin nanocomposite films with asymmetric gradient alternating multilayer structures exhibit superhigh electromagnetic interference shielding performances and robust mechanical properties.Chem. Eng. J.2022,447, 137537..
Duan, Y.; Zhang, L.; Tian, D.; Liao, S.; Wang, Y.; Xu, Y.; Sun, R.; Hu, Y. Modulus matching strategy of ultra-soft electrically conductive silicone composites for high performance electromagnetic interference shielding.Chem. Eng. J.2023,472, 144934..
Lee, G. H.; Lee, D. H.; Jeon, W.; Yoon, J.; Ahn, K.; Nam, K. S.; Kim, M.; Kim, J. K.; Koo, Y. H.; Joo, J.; Jung, W.; Lee, J.; Nam, J.; Park, S.; Jeong, J.W.; Park, S. Conductance stable and mechanically durable bi-layer EGaIn composite-coated stretchable fiber for 1D bioelectronics.Nat. Commun.2023,14, 4173..
John, A.; Benny, L.; Cherian, A. R.; Narahari, S. Y.; Varghese, A.; Hegde, G. Electrochemical sensors using conducting polymer/noble metal nanoparticle nanocomposites for the detection of various analytes: a review.J. Nanostructure Chem.2021,11, 1−31..
Pal, N. Nanoporous metal oxide composite materials: a journey from the past, present to future.Adv. Colloid Interface Sci.2020,280, 102156..
Maurya, D. K.; Dhanusuraman, R.; Guo, J. Z.; Angaiah, S. Na-ion conducting filler embedded 3D-electrospun nanofibrous hybrid solid polymer membrane electrolyte for high-performance Na-ion capacitor.Adv. Compos. Hybrid. Mater.2023,6, 45..
Huang, J.; Zhao, X.; Wu, Y.; Yang, N.; Ma, C.; Cheng, Y.; Zhang, J. Facile green path to interconnected nano-graphite networks to overtake graphene as conductive fillers.Carbon2021,173, 667−675..
Asghari, N.; Hassanian-Moghaddam, D.; Javadi, A.; Ahmadi, M. Enhanced sensing performance of EVA/LDPE/MWCNT piezoresistive foam sensor for long-term pressure monitoring.Chem. Eng. J.2023,472, 145055..
Xu, P.; Wang, S.; Lin, A.; Min, H. K.; Zhou, Z.; Dou, W.; Sun, Y.; Huang, X.; Tran, H.; Liu, X. Conductive and elastic bottlebrush elastomers for ultrasoft electronics.Nat. Commun.2023,14, 623..
Chauhan, S.; Bhushan, R. K. Improvement in mechanical performance due to hybridization of carbon fiber/epoxy composite with carbon black.Adv. Compos. Hybrid Mater.2018,1, 602−611..
Hu, L.; Xie, Y.; Gao, S.; Shi, X.; Lai, C.; Zhang, D.; Lu, C.; Liu, Y.; Du, L.; Fang, X.; Xu, F.; Wang, C.; Chu, F. Strain-induced orientation facilitates the fabrication of highly stretchable and tough xylan-based hydrogel for strain sensors.Carbohydr. Polym.2023,312, 120827..
Gong, K. L.; Zhou, K. Q.; Qian, X. D.; Shi, C. L.; Yu, B. MXene as emerging nanofillers for high-performance polymer composites: a review.Compos. Part B-Eng.2021,217, 108867..
Malaki, M.; Varma, R. S. Mechanotribological aspects of MXene-reinforced nanocomposites.Adv. Mater.2020,32, 2003154..
Zhou, W. X.; Tang, Y. J.; Zhang, X. Y.; Zhang, S. T.; Xue, H. G.; Pang, H. MOF derived metal oxide composites and their applications in energy storage.Coord. Chem. Rev.2023,477, 214949..
Peng, Y.; Xu, J.; Xu, J. M.; Ma, J.; Bai, Y.; Cao, S.; Zhang, S. T.; Pang, H. Metal-organic framework (MOF) composites as promising materials for energy storage applications.Adv. Colloid Interface Sci.2022,307, 102732..
Xu, K.; Zhang, S. T.; Zhuang, X. L.; Zhang, G. X.; Tang, Y. J.; Pang, H. Recent progress of MOF-functionalized nanocomposites: From structure to properties.Adv. Colloid Interface Sci.2024,323, 103050..
Park, S. H.; Hwang, J.; Park, G. S.; Ha, J. H.; Zhang, M.; Kim, D.; Yun, D. J.; Lee, S.; Lee, S. H. Modeling the electrical resistivity of polymer composites with segregated structures.Nat. Commun.2019,10, 2537..
Song, P.; Song, J.; Zhang, Y. Stretchable conductor based on carbon nanotube/carbon black silicone rubber nanocomposites with highly mechanical, electrical properties and strain sensitivity.Compos. B Eng.2020,191, 107979..
Chen, L.; Hou, J.; Chen, Y.; Wang, H.; Duan, Y.; Zhang, J. Synergistic effect of conductive carbon black and silica particles for improving the pyroresistive properties of high density polyethylene composites.Compos. B Eng.2019,178, 107465..
Umoren, S. A.; Solomon, M. M. Protective polymeric films for industrial substrates: A critical review on past and recent applications with conducting polymers and polymer composites/nanocomposites.Prog. Mater. Sci.2019,104, 380−450..
Chen, Y.; Wang, L.; Wu, Z.; Luo, J.; Li, B.; Huang, X.; Xue, H.; Gao, J. Super-hydrophobic, durable and cost-effective carbon black/rubber composites for high performance strain sensors.Compos. B Eng.2019,176, 107358..
Deng, H.; Lin, L.; Ji, M.; Zhang, S.; Yang, M.; Fu, Q. Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials.Prog. Polym. Sci.2014,39, 627−655..
Prunet, G.; Pawula, F.; Fleury, G.; Cloutet, E.; Robinson, A. J.; Hadziioannou, G.; Pakdel, A. A review on conductive polymers and their hybrids for flexible and wearable thermoelectric applications.Mater. Today Phys.2021,18, 100402..
Wu, J. P.; Yun, Z. H.; Song, W. L.; Yu, T.; Xue, W.; Liu, Q. Y.; Sun, X. Z. Highly oriented hydrogels for tissue regeneration: design strategies, cellular mechanisms, and biomedical applications.Theranostics2024,14, 1982−2035..
Liu, Y.; Guo, Z. Small functional hydrogels with big engineering applications.Mater. Today Phys.2024,43, 101397..
Zhu, T.; Ni, Y.; Biesold, G. M.; Cheng, Y.; Ge, M.; Li, H.; Huang, J.; Lin, Z.; Lai, Y. Recent advances in conductive hydrogels: classifications, properties, and applications.Chem. Soc. Rev.2023,52, 473−509..
Cheng, X.; Zhang, F.; Dong, W. Soft conductive hydrogel-based electronic skin for robot finger grasping manipulation.Polymers2022,14, 3930..
Gong, Y.; Zhang, Y.-Z.; Fang, S.; Liu, C.; Niu, J.; Li, G.; Li, F.; Li, X.; Cheng, T.; Lai, W. Y. Artificial intelligent optoelectronic skin with anisotropic electrical and optical responses for multi-dimensional sensing.Appl. Phys. Rev.2022,9, 021403..
Zhang, X.; Chen, J.; He, J.; Bai, Y.; Zeng, H. Mussel-inspired adhesive and conductive hydrogel with tunable mechanical properties for wearable strain sensors.J. Colloid Interface Sci.2021,585, 420−432..
Kim, S. G.; Ryplida, B.; Jo, H. J.; Lee, G.; Park, S. Y. Stimuli-responsive conductive hydrogel touch sensor for electrochemical and fluorescence monitoring of acetylcholinesterase activity and inhibition.Chem. Eng. J.2023,452, 139028..
Liu, D.; Huyan, C.; Wang, Z.; Guo, Z.; Zhang, X.; Torun, H.; Mulvihill, D.; Xu, B. B.; Chen, F. Conductive polymer basedhydrogels and their application in wearable sensors: A review.Mater. Horiz.2023,10, 2800−2823..
Peng, K.; Zhang, J.; Yang, J.; Lin, L.; Gan, Q.; Yang, Z.; Chen, Y.; Feng, C. Green conductive hydrogel electrolyte with self-healing ability and temperature adaptability for flexible supercapacitors.ACS Appl. Mater. Interfaces2022,14, 39404−39419..
Cheng, T.; Zhang, Y. Z.; Wang, S.; Chen, Y. L.; Gao, S. Y.; Wang, F.; Lai, W. Y.; Huang, W. Conductive hydrogel-based electrodes and electrolytes for stretchable and self-healable supercapacitors.Adv. Funct. Mater.2021,31, 2101303..
Baig, M. M.; Khan, S. A.; Ahmad, H.; Liang, J.; Zhu, G.; Pang, H.; Zhang, Y. 3D printing of hydrogels for flexible micro-supercapacitors.FlexMat2024,1, 79−99..
Zheng, W.; Wang, L.; Jiao, H.; Wu, Z.; Zhao, Q.; Lin, T.; Ma, H.; Zhang, Z.; Xu, X.; Cao, J.; Zhong, J.; Xu, J.; Lu, B. A cost-effective, fast cooling, and efficient anti-inflammatory multilayered topological hydrogel patch for burn wound first aid.Chem. Eng. J.2023,455, 140553..
Tian, F.; Yu, J.; Wang, W.; Zhao, D.; Cao, J.; Zhao, Q.; Wang, F.; Yang, H.; Wu, Z.; Xu, J.; Lu, B. Design of adhesive conducting PEDOT-MeOH:PSS/PDA neural interfaceviaelectropolymerization for ultrasmall implantable neural microelectrodes.J. Colloid Interface Sci.2023,638, 339−348..
Xuan, H.; Wu, S.; Jin, Y.; Wei, S.; Xiong, F.; Xue, Y.; Li, B.; Yang, Y.; Yuan, H. A Bioinspired Self-Healing Conductive Hydrogel Promoting Peripheral Nerve Regeneration.Advanced Science2023,10, 2302519..
Kuang, X.; Arican, M. O.; Zhou, T.; Zhao, X.; Zhang, Y. S. Functional tough hydrogels: design, processing, and biomedical applications.Acc. Chem. Res.2022,4, 101−114..
Gosecka, M.; Gosecki, M.; Jaworska-Krych, D. Hydrophobized hydrogels: construction strategies, properties, and biomedical applications.Adv. Funct. Mater.2023,33, 2212302..
Yuk, H.; Lu, B. Y.; Zhao, X. H. Hydrogel bioelectronics.Chem. Soc. Rev.2019,48, 1642−1667..
Zhang, Z.; Chen, G.; Xue, Y.; Duan, Q.; Liang, X.; Lin, T.; Wu, Z.; Tan, Y.; Zhao, Q.; Zheng, W.; Wang, L.; Wang, F.; Luo, X.; Xu, J.; Liu, J.; Lu, B. Fatigue-resistant conducting polymer hydrogels as strain sensor for underwater robotics.Adv. Funct. Mater.2023,33, 2305705..
Huang, H. Y.; Dong, Z. C.; Ren, X. Y.; Jia, B.; Lie, G. W.; Zhou, S. W.; Zhao, X.; Wang, W. Z. High-strength hydrogels: fabrication, reinforcement mechanisms, and applications.Nano Res.2023,16, 3475−3515..
Yin, Y.; Gu, Q. Z.; Liu, X. B.; Liu, F. G.; McClements, D. J. Double network hydrogels: design, fabrication, and application in biomedicines and foods.Adv. Colloid Interface Sci.2023,320, 102999..
Ma, J.; Zhang, X.; Yin, D.; Cai, Y.; Shen, Z.; Sheng, Z.; Bai, J.; Qu, S.; Zhu, S.; Jia, Z. Designing ultratough single-network hydrogels with centimeter-scale fractocohesive lengthsviainelastic crack blunting.Adv. Mater.2024,36, 2311795..
Li, G.; Guo, C. F. PEDOT:PSS-based intrinsically soft and stretchable bioelectronics.Soft Sci.2022,2, 7..
Yuk, H.; Lu, B. Y.; Lin, S.; Qu, K.; Xu, J. K.; Luo, J. H.; Zhao, X. H. 3D printing of conducting polymers.Nat. Commun. 2020 ,11, 1604..
Cheng, T.; Wang, F.; Zhang, Y. Z.; Li, L.; Gao, S. Y.; Yang, X. L.; Wang, S.; Chen, P. F.; Lai, W. Y. 3D printable conductive polymer hydrogels with ultra-high conductivity and superior stretchability for free-standing elastic all-gel supercapacitors.Chem. Eng. J.2022,450, 138311..
Wang, J.; Li, Q.; Li, K. C.; Sun, X.; Wang, Y. Z.; Zhuang, T. T.; Yan, J. J.; Wang, H. Ultra-high electrical conductivity in filler-free polymeric hydrogels toward thermoelectrics and electromagnetic interference shielding.Adv. Mater.2022,34, 2109904..
Lu, B.; Yuk, H.; Lin, S.; Jian, N.; Qu, K.; Xu, J.; Zhao, X. Pure PEDOT:PSS hydrogels.Nat. Commun.2019,10, 1043..
Won, D.; Kim, J.; Choi, J.; Kim, H.; Han, S.; Ha, I.; Bang, J.; Kim, K. K.; Lee, Y.; Kim, T. S.; Park, J. H.; Kim, C. Y.; Ko, S. H. Digital selective transformation and patterning of highly conductive hydrogel bioelectronics by laser-induced phase separation.Sci. Adv.2022,8, eabo3209..
Yang, T. T.; Xu, C.; Liu, C. L.; Ye, Y. Q.; Sun, Z. W.; Wang, B.; Luo, Z. Q. Conductive polymer hydrogels crosslinked by electrostatic interaction with PEDOT:PSS dopant for bioelectronics application.Chem. Eng. J.2022,429, 132430..
Xu, X. W.; Jerca, V. V.; Hoogenboom, R. Bioinspired double network hydrogels: From covalent double network hydrogelsviahybrid double network hydrogels to physical double network hydrogels.Mater. Horiz.2021,8, 1173−1188..
Gong, J. P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Double-network hydrogels with extremely high mechanical strength.Adv. Mater.2003,15, 1155−1158..
Xia, S.; Song, S. X.; Gao, G. H. Robust and flexible strain sensors based on dual physically cross-linked double network hydrogels for monitoring human-motion.Chem. Eng. J.2018,354, 817−824..
Wang, X. H.; Song, F.; Qian, D.; He, Y. D.; Nie, W. C.; Wang, X. L.; Wang, Y. Z. Strong and tough fully physically crosslinked double network hydrogels with tunable mechanics and high self-healing performance.Chem. Eng. J.2018,349, 588−594..
Xie, T.; Ou, F. Y.; Ning, C.; Tuo, L.; Zhang, Z. C.; Gao, Y.; Pan, W. Y.; Li, Z. Q.; Gao, W. Dual-network carboxymethyl chitosan conductive hydrogels for multifunctional sensors and high-performance triboelectric nanogenerators.Carbohydr. Polym.2024,333, 121960..
Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. Polymer engineering based on reversible covalent chemistry: a promising innovative pathway towards new materials and new functionalities.Prog. Polym. Sci.2018,80, 39−93..
Zhang, H. D.; Shen, H.; Lan, J. A.; Wu, H.; Wang, L. J.; Zhou, J. P. Dual-network polyacrylamide/carboxymethyl chitosan-grafted-polyaniline conductive hydrogels for wearable strain sensors.Carbohydr. Polym.2022,295, 119848..
Cui, C.; Shao, C.; Meng, L.; Yang, J. High-strength, self-adhesive, and strain-sensitive chitosan/poly(acrylic acid) double-network nanocomposite hydrogels fabricated by salt-soaking strategy for flexible sensors.ACS Appl. Mater. Interfaces2019,11, 39228−39237..
Deng, Y.; Huang, M.; Sun, D.; Hou, Y.; Li, Y.; Dong, T.; Wang, X.; Zhang, L.; Yang, W. Dual Physically Cross-Linked κ-Carrageenan-Based Double Network Hydrogels with Superior Self-Healing Performance for Biomedical Application.ACS Appl. Mater. Interfaces2018,10, 37544−37554..
Zhang, C. Y.; Wang, M. X.; Jiang, C. H.; Zhu, P. Z.; Sun, B. Q.; Gao, Q.; Gao, C. X.; Liu, R. Y. Highly adhesive and self-healingγ-PGA/PEDOT:PSS conductive hydrogels enabled by multiple hydrogen bonding for wearable electronics.Nano Energy2022,95, 106991..
Gao, Q.; Li, C.; Wang, M. X.; Zhu, J. D.; Munna, D. R.; Wang, P.; Zhu, C. H.; Gao, J. F.; Gao, C. X. A highly adhesive, self-healing and perdurable PEDOT:PSS/PAA-Fe3+gel enabled by multiple non-covalent interactions for multi-functional wearable electronics.J. Mater. Chem. C2022,10, 6271−6280..
Nie, Z.; Peng, K.; Lin, L.; Yang, J.; Cheng, Z.; Gan, Q.; Chen, Y.; Feng, C. A conductive hydrogel based on nature polymer agar with self-healing ability and stretchability for flexible sensors.Chem. Eng. J.2023,454, 139843..
Luo, Y. C.; Yu, M. L.; Zhang, Y. T.; Wang, Y. Y.; Long, L.; Tan, H. H.; Li, N.; Xu, L. J.; Xu, J. X. Highly sensitive strain sensor and self-powered triboelectric nanogenerator using a fully physical crosslinked double-network conductive hydrogel.Nano Energy2022,104, 107955..
Zhang, H.; Yang, Q.; Xu, L.; Li, N.; Tan, H.; Du, J.; Yu, M.; Xu, J. Triboelectric nanogenerators based on hydrated lithium ions incorporated double-network hydrogels for biomechanical sensing and energy harvesting at low temperature.Nano Energy2024,125, 109521..
Di, X.; Li, J.; Yang, M. M.; Zhao, Q.; Wu, G. L.; Sun, P. C. Bioinspired, nucleobase-driven, highly resilient, and fast-responsive antifreeze ionic conductive hydrogels for durable pressure and strain sensors.J. Mater. Chem. A2021,9, 20703−20713..
Li, X. F.; Jiang, M.; Du, Y. M.; Ding, X.; Xiao, C.; Wang, Y. Y.; Yang, Y. Y.; Zhuo, Y. Z.; Zheng, K.; Liu, X. L.; Chen, L.; Gong, Y.; Tian, X. Y.; Zhang, X. Self-healing liquid metal hydrogel for human-computer interaction and infrared camouflage.Mater. Horiz.2023,10, 2945−2957..
Guan, X. Y.; Zhang, B. Y.; Zhu, Y. X.; Sun, X. H.; Meng, K.; Wang, Z. Q.; El-Gowily, A. H.; Chen, Y.; Zheng, S.; Han, Q. X.; Elafify, M. S.; An, M.; Rao, P.; Ueda, M.; Ito, Y. Mineral tanning-inspired metal ions coordination hydrogels with outstanding mechanical strength and toughness for flexible force sensors.Adv. Funct. Mater.2024, 2313633..
Guan, X. Y.; Zheng, S.; Zhang, B. Y.; Sun, X. H.; Meng, K.; Elafify, M. S.; Zhu, Y. X.; El-Gowily, A. H.; An, M.; Li, D. P.; Han, Q. X. Masking strategy constructed metal coordination hydrogels with improved mechanical properties for flexible electronic sensors.ACS Appl. Mater. Interfaces2024,16, 5168−5182..
Hirsch, M.; D'Onofrio, L.; Guan, Q. H.; Hughes, J.; Amstad, E. 4D printing of metal-reinforced double network granular hydrogels.Chem. Eng. J.2023,473, 145433..
Zhao, X. H.; Chen, X. Y.; Yuk, H.; Lin, S. T.; Liu, X. Y.; Parada, G. Soft materials by design: unconventional polymer networks give extreme properties.Chem. Rev.2021,121, 4309−4372..
Mredha, M. T. I.; Jeon, I. Biomimetic anisotropic hydrogels: advanced fabrication strategies, extraordinary functionalities, and broad applications.Prog. Mater. Sci.2022,124, 100870..
Chen, Z.; Wang, H. G.; Cao, Y. T.; Chen, Y. J.; Akkus, O.; Liu, H. Z.; Cao, C. Y. Bio-inspired anisotropic hydrogels and their applications in soft actuators and robots.Matter2023,6, 3803−3837..
Zhang, Z.; Hao, J. C. Bioinspired organohydrogels with heterostructures: fabrications, performances, and applications.Adv. Colloid Interface Sci.2021,292, 102408..
Zhang, L. H.; Zhao, T. Y.; Liu, M. J. Bioinspired multiphase gels using spatial confinement strategy.Acc. Mater. Res.2024,5, 48−63..
Guo, X.; Dong, X.; Zou, G.; Gao, H.; Zhai, W. Strong and tough fibrous hydrogels reinforced by multiscale hierarchical structures with multimechanisms.Sci. Adv.2023,9, eadf7075..
Zhang, S.; Li, Y. L.; Zhang, H. J.; Wang, G. J.; Wei, H.; Zhang, X. Y.; Ma, N. Bioinspired conductive hydrogel with ultrahigh toughness and stable antiswelling properties for articular cartilage replacement.ACS Mater. Lett.2021,3, 807−814..
Prince, E.; Kumacheva, E. Design and applications of man-made biomimetic fibrillar hydrogels.Nat. Rev. Mater.2019,4, 99−115..
Walker, B. W.; Lara, R. P.; Mogadam, E.; Yu, C. H.; Kimball, W.; Annabi, N. Rational design of microfabricated electroconductive hydrogels for biomedical applications.Prog. Polym. Sci.2019,92, 135−157..
Li, W. Z.; Yu, Y. R.; Huang, R. K.; Wang, X. C.; Lai, P. X.; Chen, K.; Shang, L. R.; Zhao, Y. J. Multi-bioinspired functional conductive hydrogel patches for wound healing management.Adv. Sci.2023,10, 2301479..
Park, C. S.; Kang, Y. W.; Na, H.; Sun, J. Y. Hydrogels for bioinspired soft robots.Prog. Polym. Sci.2024,150, 101791..
Hua, M.; Wu, S.; Ma, Y.; Zhao, Y.; Chen, Z.; Frenkel, I.; Strzalka, J.; Zhou, H.; Zhu, X.; He, X. Strong tough hydrogelsviathe synergy of freeze-casting and salting out.Nature2021,590, 594−599..
Dong, X. Y.; Guo, X.; Liu, Q. Y.; Zhao, Y. J.; Qi, H. B.; Zhai, W. Strong and tough conductive organo-hydrogelsviafreeze-casting assisted solution substitution.Adv. Funct. Mater.2022,32, 2203610..
Hou, X.; Chen, J.; Chen, Z.; Yu, D.; Zhu, S.; Liu, T.; Chen, L. Flexible aerogel materials: a review on revolutionary flexibility strategies and the multifunctional applications.ACS Nano2024,18, 11525−11559..
Wang, X. G.; Li, Y. C.; Meng, D.; Gu, X. Y.; Sun, J.; Hu, Y.; Bourbigot, S.; Zhang, S. A review on flame-retardant polyvinyl alcohol: Additives and technologies.Polym. Rev.2023,63, 324−364..
Yang, W. J.; Wei, C. X.; Yuen, A. C. Y.; Lin, B.; Yeoh, G. H.; Lu, H. D.; Yang, W. Fire-retarded nanocomposite aerogels for multifunctional applications: a review.Compos. B Eng.2022,237, 109866..
Cao, M.; Liu, B. W.; Zhang, L.; Peng, Z. C.; Zhang, Y. Y.; Wang, H.; Zhao, H. B.; Wang, Y. Z. Fully biomass-based aerogels with ultrahigh mechanical modulus, enhanced flame retardancy, and great thermal insulation applications.Compos. Part B-Eng.2021,225, 109309..
Mahmoudpour, M.; Dolatabadi, J. E. N.; Hasanzadeh, M.; Soleymani, J. Carbon-based aerogels for biomedical sensing: advances toward designing the ideal sensor.Adv. Colloid Interface Sci.2021,298, 102550..
Karamikamkar, S.; Yalcintas, E. P.; Haghniaz, R.; de Barros, N. R.; Mecwan, M.; Nasiri, R.; Davoodi, E.; Nasrollahi, F.; Erdem, A.; Kang, H.; Lee, J.; Zhu, Y. Z.; Ahadian, S.; Jucaud, V.; Maleki, H.; Dokmeci, M. R.; Kim, H. J.; Khademhosseini, A. Aerogel-based biomaterials for biomedical applications: from fabrication methods to disease-targeting applications.Adv. Sci.2023,10, 2204681..
Guo, Y. B.; Qiao, D. L.; Zhao, S. M.; Liu, P.; Xie, F. W.; Zhang, B. J. Biofunctional chitosan-biopolymer composites for biomedical applications.Mater. Sci. Eng. R-Rep.2024,159, 100775..
Peydayesh, M.; Vogt, J.; Chen, X. L.; Zhou, J. T.; Donat, F.; Bagnani, M.; Mueller, C. R.; Mezzenga, R. Amyloid-based carbon aerogels for water purification.Chem. Eng. J.2022,449, 137703..
Gao, B.; Feng, X. B.; Zhang, Y. F.; Zhou, Z. X.; Wei, J. F.; Qiao, R.; Bi, F. K.; Liu, N.; Zhang, X. D. Graphene-based aerogels in water and air treatment: a review.Chem. Eng. J.2024,484, 149604..
Zhang, Z.; Wang, P.; Zhang, W.; Hu, X.; Zhang, X.; Gou, Z.; Xu, W.; Zheng, H.; Ding, X. A review: Recent advances in conductive aerogels: assembly strategies, conductive mechanisms, influencing factors and applications.J. Mater. Sci.2024,59, 4431−4460..
Tran, N. Q.; Le, T. A.; Lee, H. An ultralight and flexible sodiumtitanate nanowire aerogel with superior sodium storage.J. Mater. Chem. A2018,6, 17495−17502..
Cheng, Z.; Wang, R.; Wang, Y.; Cao, Y.; Shen, Y.; Huang, Y.; Chen, Y. Recent advances in graphene aerogels as absorption-dominated electromagnetic interference shielding materials.Carbon2023,205, 112−137..
Ma, M.; Liao, Y.; Lin, H.; Shao, W.; Tao, W.; Chen, S.; Shi, Y.; He, H.; Zhu, Y.; Wang, X. Double-layer of CNF/rGO film and CNF/rGO/FeCo-LDO aerogel structured composites for efficient electromagnetic interference shielding.Carbon2024,220, 118863..
Pai, A. R.; Binumol, T.; Gopakumar, D. A.; Pasquini, D.; Seantier, B.; Kalarikkal, N.; Thomas, S. Ultra-fast heat dissipating aerogels derived from polyaniline anchored cellulose nanofibers as sustainable microwave absorbers.Carbohyd. Polym.2020,246, 116663..
Huang, J.; Li, D.; Zhao, M.; Ke, H.; Mensah, A.; Lv, P.; Tian, X.; Wei, Q. Flexible electrically conductive biomass-based aerogels for piezoresistive pressure/strain sensors.Chem. Eng. J.2019,373, 1357−1366..
Han, Y.; Cao, Y.; Bolisetty, S.; Tian, T.; Handschin, S.; Lu, C.; Mezzenga, R. Amyloid fibril-templated high-performance conductive aerogels with sensing properties.Small2020,16, 2004932..
Zhang, X.; Qian, K.; Fang, J.; Thaiboonrod, S.; Miao, M.; Feng, X. Synchronous deprotonation-protonation for mechanically robust chitin/aramid nanofibers conductive aerogel with excellent pressure sensing, thermal management, and electromagnetic interference shielding.Nano Res.2024,17, 2038−2049..
Li, Y.; Pang, Z.; Ghani, A.; Little, J. M.; Wang, L.; Yang, H.; Zhao, Y.; Chen, P. Y. Gradient structural and compositional design of conductive MXene aerogels for stable Zn metal anodes.Adv. Energy Mater.2023,13, 2301557..
Tang, S.; Ma, M.; Zhang, X.; Zhao, X.; Fan, J.; Zhu, P.; Shi, K.; Zhou, J. Covalent cross-links enable the formation of ambient-dried biomass aerogels through the activation of a triazine derivative for energy storage and generation.Adv. Funct. Mater.2022,32, 2205417..
Wang, D.-C.; Yu, H.-Y.; Qi, D.; Ramasamy, M.; Yao, J.; Tang, F.; Tam, K. C.; Ni, Q. Supramolecular self-assembly of 3D conductive cellulose nanofiber aerogels for flexible supercapacitors and ultrasensitive sensors.ACS Appl. Mater. Interfaces2019,11, 24435−24446..
Zhang, L.; Song, T.; Shi, L.; Wen, N.; Wu, Z.; Sun, C.; Jiang, D.; Guo, Z. Recent progress for silver nanowires conducting film for flexible electronics.J. Nanostruct. Chem.2021,11, 323−341..
Yang, Y.; Duan, S.; Zhao, H. Advances in constructing silver nanowire-based conductive pathways for flexible and stretchable electronics.Nanoscale2022,14, 11484−11511..
Qian, F.; Lan, P. C.; Freyman, M. C.; Chen, W.; Kou, T.; Olson, T. Y.; Zhu, C.; Worsley, M. A.; Duoss, E. B.; Spadaccini, C. M.; Baumann, T.; Han, T. Y. J. Ultralight conductive silver nanowire aerogels.Nano Lett.2017,17, 7171−7176..
Tian, Z.; Zhao, Y.; Wang, S.; Zhou, G.; Zhao, N.; Wong, C. P. A highly stretchable and conductive composite based on an emulsion-templated silver nanowire aerogel.J. Mater. Chem. A2020,8, 1724−1730..
Touron, M.; Celle, C.; Orgéas, L.; Simonato, J. P. Hybrid silver nanowire-CMC aerogels: from 1D nanomaterials to 3D electrically conductive and mechanically resistant lightweight architectures.ACS Nano2022,16, 14188−14197..
Yeh, C. C.; Zan, H. W.; Soppera, O. Solution-based micro- and nanoscale metal oxide structures formed by direct patterning for electro-optical applications.Adv. Mater.2018,30, 1800923..
Ouyang, W.; Teng, F.; He, J. H.; Fang, X. Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering.Adv. Funct. Mater.2019,29, 1807672..
Yoo, H.; Lee, I. S.; Jung, S.; Rho, S. M.; Kang, B. H.;Kim, H. J. A Review of phototransistors using metal oxide semiconductors: research progress and future directions.Adv. Mater.2021,33, 2006091..
Nishikiori, H.; Fujiwara, S.; Miyagawa, S.; Zettsu, N.; Teshima, K. Crystal growth of titania by photocatalytic reaction.Appl. Catal. B-environ.2017,217, 241−246..
Gannoun, R.; Durán-Olivencia, F. J.; Pérez, A. T.; Valverde, J. M. Titania coatings: a mechanical shield for cohesive granular media at high temperatures.Chem. Eng. J.2022,450, 138123..
Zhang, R.; Yan, F.; Chen, Y. Exogenous physical irradiation on titania semiconductors: Materials chemistry and tumor-specific nanomedicine.Adv. Sci.2018,5, 1801175..
Kim, H.; Kwon, H.; Song, R.; Shin, S.; Ham, S. Y.; Park, H. D.; Lee, J.; Fischer, P.; Bodenschatz, E. Hierarchical optofluidic microreactor for water purification using an array of TiO2nanostructures.npj Clean Water2022,5, 62..
Geng, W.; Jiang, G.; Liu, H.; Xue, L.; Ding, L.; Li, Y.; Wu, Y.; Yang, R. A Direct-contact photocurrent-direction-switching biosensing platform based on in Situ formation of CN QDs/TiO2nanodiscs and double-supported 3D DNA walking amplification.Small2023,19, 2302829..
Zhang, M.; Wang, Y.; Zhang, Y.; Song, J.; Si, Y.; Yan, J.; Ma, C.; Liu, Y. T.; Yu, J.; Ding, B. Conductive and elastic TiO2nanofibrous aerogels: a new concept toward self-supported electrocatalysts with superior activity and durability.Angew. Chem. Int. Ed.2020,59, 23252−23260..
Sheng, Z.; Liu, Z.; Hou, Y.; Jiang, H.; Li, Y.; Li, G.; Zhang, X. The rising aerogel fibers: status, challenges, and opportunities.Adv. Sci.2023,10, 2205762..
Du, Y.; Xu, J.; Fang, J.; Zhang, Y.; Liu, X.; Zuo, P.; Zhuang, Q. Ultralight, highly compressible, thermally stable MXene/aramid nanofiber anisotropic aerogels for electromagnetic interference shielding.J. Mater. Chem. A2022,10, 6690−6700..
Wei, C.; Zhang, Q.; Wang, Z.; Yang, W.; Lu, H.; Huang, Z.; Yang, W.; Zhu, J. Recent advances in MXene-based aerogels: fabrication, performance and application.Adv. Funct. Mater.2023,33, 2211889..
Wu, F.; Hu, P.; Hu, F.; Tian, Z.; Tang, J.; Zhang, P.; Pan, L.; Barsoum, M. W.; Cai, L.; Sun, Z. Multifunctional MXene/C aerogels for enhanced microwave absorption and thermal insulation.Nano-Micro Lett.2023,15, 194..
Chen, Y.; Zhang, L.; Yang, Y.; Pang, B.; Xu, W.; Duan, G.; Jiang, S.; Zhang, K. Recent progress on nanocellulose aerogels: Preparation, modification, composite fabrication, applications.Adv. Mater.2021,33, 2005569..
Huang, Z.; Zhang, H.; Guo, M.; Zhao, M.; Liu, Y.; Zhang, D.; Terrones, M.; Wang, Y. Large-scale preparation of electrically conducting cellulose nanofiber/carbon nanotube aerogels: ambient-dried, recyclable, and 3D-printable.Carbon2022,194, 23−33..
Xu, T.; Song, Q.; Liu, K.; Liu, H.; Pan, J.; Liu, W.; Dai, L.; Zhang, M.; Wang, Y.; Si, C.; Du, H.; Zhang, K. Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode.Nano-Micro Lett.2023,15, 98..
Garemark, J.; Yang, X.; Sheng, X.; Cheung, O.; Sun, L.; Berglund, L. A.; Li, Y. Top-down approach making anisotropic cellulose aerogels as universal substrates for multifunctionalization.ACS Nano2020,14, 7111−7120..
Hu, Y.; Zhuo, H.; Luo, Q.; Wu, Y.; Wen, R.; Chen, Z.; Liu, L.; Zhong, L.; Peng, X.; Sun, R. Biomass polymer-assisted fabrication of aerogels from MXenes with ultrahigh compression elasticity and pressure sensitivity.J. Mater. Chem. A2019,7, 10273−10281..
Feng, J.; Su, B.L.; Xia, H.; Zhao, S.; Gao, C.; Wang, L.; Ogbeide, O.; Feng, J.; Hasan, T. Printed aerogels: chemistry, processing, and applications.Chem. Soc. Rev.2021,50, 3842−3888..
Guo, B.; Liang, G.; Yu, S.; Wang, Y.; Zhi, C.; Bai, J. 3Dprinting of reduced graphene oxide aerogels for energy storage devices: a paradigm from materials and technologies to applications.Energy Storage Mater.2021,39, 146−165..
Tetik, H.; Orangi, J.; Yang, G.; Zhao, K.; Mujib, S. B.; Singh, G.; Beidaghi, M.; Lin, D. 3D printed MXene aerogels with truly 3D macrostructure and highly engineered microstructure for enhanced electrical and electrochemical performance.Adv. Mater.2022,34, 2104980..
Zhu, P.; Yu, Z.; Sun, H.; Zheng, D.; Zheng,Y.; Qian, Y.; Wei, Y.; Lee, J.; Srebnik, S.; Chen, W.; Chen, G.; Jiang, F. 3D printed cellulose nanofiber aerogel scaffold with hierarchical porous structures for fast solar-driven atmospheric water harvesting.Adv. Mater.2024,36, 2306653..
Qi, C. Z.; Wu, X.; Liu, J.; Luo, X. J.; Zhang, H. B.; Yu, Z. Z. Highly conductive calcium ion-reinforced MXene/sodium alginate aerogel meshes by direct ink writing for electromagnetic interference shielding and Joule heating.J. Mater. Sci. Technol.2023,135, 213−220..
Shi, Q.; Sun, J.; Hou, C.; Li, Y.; Zhang, Q.; Wang, H. Advanced functional fiber and smart textile.Adv. Fiber Mater.2019,1, 3−31..
Zhang, Y.; Zhang, Y.; Zhou, J.; Zhang, D.; Lin, H.; Chen, Y.; Li, Y.; Xiong, J. Stretchable composite conductive fibers for wearables.Adv. Mater. Technol.2022,8, 2201442..
Ma, L.; Nie, Y.; Liu, Y.; Huo, F.; Bai, L.; Li, Q.; Zhang, S. Preparation of core/shell electrically conductive fibers by efficient coating carbon nanotubes on polyester.Adv. Fiber Mater.2021,3, 180−191..
Veeramuthu, L.; Cho, C. J.; Venkatesan, M.; Kumar, G. R.; Hsu, H. Y.; Zhuo, B. X.; Kau, L. J.; Chung, M. A.; Lee, W. Y.; Kuo, C. C. Muscle fibers inspired electrospun nanostructures reinforced conductive fibers for smart wearable optoelectronics and energy generators.Nano Energy2022,101, 107592..
Lan, L.; Jiang, C.; Yao, Y.; Ping, J.; Ying, Y. A stretchable and conductive fiber for multifunctional sensing and energy harvesting.Nano Energy2021,84, 105954..
Song, X.; Ji, J.; Zhou, N.; Chen, M.; Qu, R.; Li, H.; Zhang, L.; Ma, S.; Ma, Z.; Wei, Y. Stretchable conductive fibers: design, properties and applications.Prog. Mater. Sci.2024,144, 101288..
Liu, W.; Liu, H.; Zhao, Z.; Liang, D.; Zhong, W.-H.; Zhang, J. A novel structural design of cellulose-based conductive composite fibers for wearable e-textiles.Carbohydrate Polymer2023,321, 121308..
Chen, C.; Feng, J.; Li, J.; Guo, Y.; Shi, X.; Peng, H. Functional fiber materials to smart fiber devices.Chem. Rev.2022,123, 613−662..
Gao, Z.; Xiao, X.; Carlo, A. D.; Yin, J.; Wang, Y.; Huang, L.; Tang, J.; Chen, J. Advances in wearable strain sensors based on electrospun fibers.Adv. Funct. Mater.2023,33, 2214265..
Ma, W.; Zhang, Y.; Pan, S.; Cheng, Y.; Shao, Z.; Xiang, H.; Chen, G.; Zhu, L.; Weng, W.; Bai, H.; Zhu, M. Smart fibers for energy conversion and storage.Chem. Soc. Rev.2021,50, 7009−7061..
Wang, H.; Liu, Z.; Ding, J.; Lepró, X.; Fang, S.; Jiang, N.; Yuan, N.; Wang, R.; Yin, Q.; Lv, W.; Liu, Z.; Zhang, M.; Ovalle-Robles, R.; Inoue, K.; Yin, S.; Baughman, R. H. Downsized sheath-core conducting fibers for weavable superelastic wires, biosensors, supercapacitors, and strain sensors.Adv. Mater.2016,28, 4998−5007..
Bonastre, J.; Molina, J.; Cases, F. Surface modification of jute fabrics by reduced graphene oxide-conducting polymer coatings for their application in low-cost and eco-friendly supercapacitors.J. Energy Storage2023,69, 107936..
Wei, L.; Wang, S.; Shan, M.; Li, Y.; Wang, Y.; Wang, F.; Wang, L.; Mao, J. Conductive fibers for biomedical applications.Bioact. Mater.2023,22, 343−364..
Woo, J.; Lee, H.; Yi, C.; Lee, J.; Won, C.; Oh, S.; Jekal, J.; Kwon, C.; Lee, S.; Song, J.; Choi, B.; Jang, K. I.; Lee, T. Ultrastretchable helical conductive fibers using percolated Ag nanoparticle networks encapsulated by elastic polymers with high durability in omnidirectional deformations for wearable electronics.Adv. Funct. Mater.2020,30, 1910026..
Yang, Z.; Zhai, Z.; Song, Z.; Wu, Y.; Liang, J.; Shan, Y.; Zheng, J.; Liang, H.; Jiang, H. Conductive and elastic 3D helical fibers for use in washable and wearable electronics.Adv. Mater.2020,32, 1907495..
Chen, Y.; Deng, Z.; Ouyang, R.; Zheng, R.; Jiang, Z.; Bai, H.; Xue, H. 3D printed stretchable smart fibers and textiles for self-powered e-skin.Nano Energy2021,84, 105866..
Lee, Y.; Bae, S.; Hwang, B.; Schroeder, M.; Lee, Y.; Baik, S. Considerably improved water and oil washability of highly conductive stretchable fibers by chemical functionalization with fluorinated silane.J. Mater. Chem. C2019,7, 12297−12305..
Khanh, T. D.; Meena, J. S.; Choi, S. B.; Kim, J.-W. Breathable, self-healable, washable and durable all-fibrous triboelectric nanogenerator for wearable electronics.Mater. Today Adv.2023,20, 100427..
Zhou, Y.; Zhao, L.; Tao, W.; Wang, T.; Sun, P.; Liu, F.; Yan, X.; Lu, G. All-nanofiber network structure for ultrasensitive piezoresistive pressure sensors.ACS Appl. Mater. Interfaces2022,14, 19949−19957..
Gao, Y.; Yu, L.; Li, Y.; Wei, L.; Yin, J.; Wang, F.; Wang, L.; Mao, J. Maple leaf inspired conductive fiber with hierarchical wrinkles for highly stretchable and integratable electronics.ACS Appl. Mater. Interfaces2022,14, 49059−49071..
Li, Y.; Liu, X.; Wang, S.; Li, W.; Wang, Q.; Guo, L.; Wang, F.; Wang, L.; Mao, J. Dopamine-induced high fiber wetness for improved conductive fiber bundles with striated polypyrrole coating toward wearable healthcare electronics.Chem. Eng. J.2024,485, 149888..
Hao, Y.; Zhang, Y.; Mensah, A.; Liao, S.; Lv, P.; Wei, Q. Scalable, ultra-high stretchable and conductive fiber triboelectric nanogenerator for biomechanical sensing.Nano Energy2023,109, 108291..
Wang, Y.; Zhu, J.; Shen, M.; Gao, C.; Wang, P.; Zhou, W.; Zhao, C.; Muhammad, N.; Gao, J.; Gao, Q. Three-layer core-shell Ag/AgCl/PEDOT:PSS composite fibersviaa one-step single-nozzle technique enabled skin-inspired tactile sensors.Chem. Eng. J.2022,442, 136270..
Wang, P.; Wang, M.; Zhu, J.; Wang, Y.; Gao, J.; Gao, C.; Gao, Q. Surface engineeringviaself-assembly on PEDOT:PSS fibers: biomimetic fluff-like morphology and sensing application.Chem. Eng. J.2021,425, 131551..
Wang, P.; Zeng, H.; Zhu, J.; Gao, Q. Micro-supercapacitors based on ultra-fine PEDOT:PSS fiberspreparedviawet-spinning.Chem. Eng. J.2024,484, 149676..
Gao, Q.; Wang, M.; Kang, X.; Zhu, C.; Ge, M. Continuous wet-spinning of flexible and water-stable conductive PEDOT: PSS/PVA composite fibers for wearable sensors.Compos. Commun.2020,17, 134−140..
Hofmann, A. I.; Ostergren, I.; Kim, Y.; Fauth, S.; Craighero, M.; Yoon, M. H.; Lund, A.; Muller, C. All-polymer conducting fibers and 3D printsviamelt processing and templated polymerization.ACS Appl. Mater. Interfaces2020,12, 8713−8721..
Xin, X.; Xue, Z.; Gao, N.; Yu, J.; Liu, H.; Zhang, W.; Xu, J.; Chen, S. Effects of conductivity-enhancement reagents on self-healing properties of PEDOT:PSS films.Synth. Met.2020,268, 116503..
Chen, Y.; Meng, J.; Xu, Y.; Li, Y.; Zhang, Q.; Hou, C.; Sun, H.; Wang, G.; Wang, H. Integrated ionic-additive assisted wet-spinning of highly conductive and stretchable PEDOT:PSS fiber for fibrous organic electrochemical transistors.Adv. Electron. Mater.2021,7, 2100231..
Chen, H.; Xu, H.; Luo, M.; Wang, W.; Qing, X.; Lu, Y.; Liu, Q.; Yang, L.; Zhong, W.; Li, M.; Wang, D. Highly conductive, ultrastrong, and flexible wet-spun PEDOT:PSS/ionic liquid fibers for wearable electronics.ACS Appl. Mater. Interfaces2023,15, 20346−20357..
Yang, R.; Gui, X.; Yao, L.; Hu, Q.; Yang, L.; Zhang, H.; Yao, Y.; Mei, H.; Tang, Z. Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding.Nano-Micro Lett.2021,13, 66..
Sun, P.; Ma, C.; Chen, Y.; Liu, H. Flexible conducting composite film with reversible in-plane folding-unfolding property.Adv. Sci.2021,8, 2102314..
Dong, X.; Liu, Q.; Liu, S.; Wu, R.; Ma, L. Silk fibroin based conductive film for multifunctional sensing and energy harvesting.Adv. Fiber Mater.2022,4, 885−893..
Lv, T. R.; Zhang, W. H.; Yang, Y. Q.; Zhang, J. C.; Yin, M. J.; Yin, Z.; Yong, K. T.; An, Q. F. Micro/nano-fabrication of flexible poly(3,4-ethylenedioxythiophene)-based conductive films for high-performance microdevices.Small2023,19, 2301071..
Gong, H.; Li, A.; Fu, G.; Zhang, M.; Zheng, Z.; Zhang, Q.; Zhou, K.; Liu, J.; Wang, H. Ultrathin flexible electrochromic devices enabled by highly transparent ion-conducting films.J. Mater. Chem. A2023,11, 8939−8949..
Cheng, T.; Zhang, Y. Z.; Zhang, J. D.; Lai, W. Y.; Huang, W. High-performance free-standing PEDOT:PSS electrodes for flexible and transparent all-solid-state supercapacitors.J. Mater. Chem. A2016,4, 10493−10499..
Liu, X.; Li, D.; Chen, X.; Lai, W. Y.; Huang, W. Highly transparent and flexible all-solid-state supercapacitors based on ultralong silver nanowire conductive networks.ACS Appl. Mater. Interfaces2018,10, 32536−32542..
He, L.; Tong, S. C. Nanostructured transparentconductive films: fabrication, characterization and applications.Mater. Sci. Eng. R Rep.2016,109, 1−101..
Yang, Y.; Deng, H.; Fu, Q. Recent progress on PEDOT:PSS based polymer blends and composites for flexible electronics and thermoelectric devices.Mater. Chem. Front.2020,4, 3130−3152..
Kayser, L. V.; Lipomi, D. J. Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS.Adv. Mater.2019,31, 1806133..
Kim, K.; Han, J.; Maruyama, S.; Balaban, M.; Jeon, I. Role and contribution of polymeric additives in perovskite solar cells: crystal growth templates and grain boundary passivators.Solar Rrl2021,5, 2000783..
Sharma, S.; Verma, A.; Rangappa, S. M.; Siengchin, S.; Ogata, S. Recent progressive developments in conductive-fillers based polymer nanocomposites (CFPNC’s) and conducting polymeric nanocomposites (CPNC’s) for multifaceted sensing applications.J. Mater. Res. Technol.2023,26, 5921−5974..
Qureshi, N.; Dhand, V.; Subhani, S.; Kumar, R. S.; Raghavan, N.; Kim, S.; Doh, J. Exploring conductive filler-embedded polymer nanocomposite for electrical percolationviaelectromagnetic shielding-based additive manufacturing.Adv. Mater. Technol.2024, 2400250..
Kuo, S. W.; Chang, F. C. POSS related polymer nanocomposites.Prog. Polym. Sci.2011,36, 1649−1696..
Wu, J.; Mather, P. T. POSS polymers: Physical properties and biomaterials applications.Polym. Rev.2009,49, 25−63..
Yan, Y. Z.; Chen, K.; Moon, H. R.; Park, S. S.; Ha, C. S. Flexible and hydrophobic polyimide/MXene-POSS nanocomposite films for electromagnetic interference shielding.Eur. Polym. J.2024,202, 112655..
Xin, X.; Yu, J.; Gao, N.; Xie, X.; Chen, S.; Zhong, J.; Xu, J. Effects of POSS composition on PEDOT:PSS conductive film.Synth. Met.2021,282, 116947..
Li, Z.; Zhu, L.; Xie, X.; Zhou, M.; Fu, C.; Chen, S. High-hardness, water-stable, and UV-resistant conductive coatings based on waterborne PEDOT:PSS/Epoxy/(KH560/SiO2) composite.J. Compos. Sci.2023,7, 51..
Li, Z.; Xie, X.; Zhou, M.; Zhu, L.; Fu, C.; Chen, S. High water-stable, hard and strong-adhesive antistatic films from waterborne PEDOT:PSS composites.Synth. Met.2023,293, 117290..
Chen, Y.; Wei, W.; Zhu, Y.; Luo, J.; Liu, X. Noncovalent functionalization of carbon nanotubesviaco-deposition of tannic acid and polyethyleneimine for reinforcement and conductivity improvement in epoxy composite.Compos. Sci. Technol.2019,170, 25−33..
Wang, L.; Song, P.; Lin, C. T.; Kong, J.; Gu, J. 3D shapeable, superior electrically conductive cellulose nanofibers/Ti3C2T xMXene aerogels/epoxy nanocomposites for promising EMI shielding.Research2020,17, 4093732..
Yang, P.; Ghosh, S.; Xia, T.; Wang, J.; Bissett, M. A.; Kinloch, I. A.; Barg, S. Joule Heating and mechanical properties of epoxy/graphene based aerogel composite.Compos. Sci. Technol.2022,218, 109199..
Guan, Q. F.; Yang, H. B.; Han, Z. M.; Ling, Z. C.; Yu, S. H. An all-natural bioinspired structural material for plastic replacement.Nat. Commun.2020,11, 5401..
Han, M.; Shen, W. Nacre-inspired cellulose nanofiber/MXene flexible composite film with mechanical robustness for humidity sensing.Carbohydr. Polym.2022,298, 120109..
Zhou, B.; Song, J.; Wang, B.; Feng, Y.; Liu, C.; Shen, C. Robust double-layered ANF/MXene-PEDOT:PSS Janus films with excellent multi-source driven heating and electromagnetic interference shielding properties.Nano Res.2022,15, 9520−9530..
Wang, Y.; Zhu, C.; Pfattner, R.; Yan, H.; Jin, L.; Chen, S.; Molina-Lopez, F.; Lissel, F.; Liu, J.; Rabiah, N. I.; Chen, Z.; Chung, J. W.; Linder, C.; Toney, M. F.; Murmann, B.; Bao, Z. A highly stretchable, transparent, and conductive polymer.Sci. Adv.2017,3, e1602076..
Ma, C.; Luo, H.; Liu, M.; Yang, H.; Liu, H.; Zhang, X.; Jiang, L. Preparation of intrinsic flexible conductive PEDOT:PSS@ionogel composite film and its application for touch panel.Chem. Eng. J.2021,425, 131542..
Li, Y.; Li, X.; Zhang, S.; Liu, L.; Hamad, N.; Bobbara, S. R.; Pasini, D.; Cicoira, F. Autonomic self-healing of PEDOT:PSS achievedviapolyethylene glycol addition.Adv. Funct. Mater.2020,30, 2002853..
Lin, H. W.; Chang, C. W.; Hsu, H. H.; Chen, J. T. Highly stretchable and reversibly photomodulated PEDOT:PSS/PVA films.ACS Appl. Polym. Mater.2023,5, 4636−4643..
Park, M.; Park, J.; Jeong, U. Design of conductive composite elastomers for stretchable electronics.Nano Today2014,9, 244−260..
Chen, J.; Yu, Q.; Cui, X.; Dong, M.; Zhang, J.; Wang, C.; Fan, J.; Zhu, Y.; Guo, Z. An overview of stretchable strain sensors from conductive polymer nanocomposites.J. Mater. Chem. C2019,7, 11710−11730..
Shi, L.; Zhu, T.; Gao, G.; Zhang, X.; Wei, W.; Liu, W.; Ding, S. Highly stretchable and transparent ionic conducting elastomers.Nat. Commun.2018,9, 2630..
Li, H. N.; Zhang, C.; Yang, H. C.; Liang, H. Q.; Wang, Z.; Xu, Z. K. Solid-state, liquid-free ion-conducting elastomers: Rising-star platforms for flexible intelligent devices.Mater. Horiz.2024,11, 1152−1176..
Yiming, B.; Han, Y.; Han, Z.; Zhang, X.; Li, Y.; Lian, W.; Zhang, M.; Yin, J.; Sun, T.; Wu, Z.; Li, T.; Fu, J.; Jia, Z.; Qu, S. A mechanically robust and versatile liquid-free ionic conductive elastomer.Adv. Mater.2021,33, 2006111..
Wang, X.; Wang, Y. L.; Yang, X.; Lu, Z.; Men, Y.; Sun, J. Skin-inspired healable conductiveelastomers with exceptional strain-adaptive stiffening and damage tolerance.Macromolecules2021,54, 10767−10775..
Zhao, H.; Yan, S.; Jin, X.; Niu, P.; Zhang, G.; Wu, Y.; Li, H. Tough, self-healable and conductive elastomers based on freezing-thawing strategy.Chem. Eng. J.2020,402, 125421..
Jin, H.; Nayeem, M. O. G.; Lee, S.; Matsuhisa, N.; Inoue, D.; Yokota, T.; Hashizume, D.; Someya, T. Highly durable nanofiber-reinforced elastic conductors for skin-tight electronic textiles.ACS Nano2019,13, 7905−7912..
Zhang, B.; Feng, Q.; Song, H.; Zhang, X.; Zhang, C.; Liu, T. Hierarchical response network boosts solvent-free ionic conductive elastomers with extreme stretchability, healability, and recyclability for ionic sensors.ACS Appl. Mater. Interfaces2022,14, 8404−8416..
Zhang, K.; Wang, Z.; Liu, Y.; Zhao, H.; Gao, C.; Wu, Y. Cephalopods-inspired repairable MWCNTs/PDMS conductive elastomers for sensitive strain sensor.Chinese J. Polym. Sci.2022,40, 384−393..
0
Views
48
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution