FOLLOWUS
a.2C2T-Centre for Textile Science and Technology, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
b.Florida Institute of Technology, Melbourne, FL 32901, USA
c.The Aerospace Corporation, El Segundo, CA 90245, USA
d.Department of Condensed Matter Physics and Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, University of Cádiz, Puerto Real, 11510 Cádiz, Spain
e.CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
f.UNED-Universidad Nacional de Educación a Distancia, Av. de Esparta, s/n, 28232, Las Rozas, Madrid, Spain
g.Facultad de Física, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
h.Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Str. 6, 01069 Dresden, Germany
i.Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg TX 78539, USA
ajpaleovieito@2c2t.uminho.pt
Published:30 November 2024,
Published Online:27 September 2024,
Received:02 April 2024,
Revised:09 June 2024,
Accepted:08 July 2024
Scan QR Code
Paleo, A. J.; Serrato, V. M.; Mánuel, J. M.; Toledano, O.; Muñoz, E.; Melle-Franco, M.; Krause, B.; Pötschke, P.; Lozano, K. Doping effect of poly(vinylidene fluoride) on carbon nanofibers deduced by thermoelectric analysis of their melt mixed films. Chinese J. Polym. Sci. 2024, 42, 1802–1810
A. J. Paleo, V. M. Serrato, J. M. Mánuel, et al. Doping Effect of Poly(vinylidene fluoride) on Carbon Nanofibers Deduced by Thermoelectric Analysis of Their Melt Mixed Films. [J]. Chinese Journal of Polymer Science, 2024,42(11):1802-1810.
Paleo, A. J.; Serrato, V. M.; Mánuel, J. M.; Toledano, O.; Muñoz, E.; Melle-Franco, M.; Krause, B.; Pötschke, P.; Lozano, K. Doping effect of poly(vinylidene fluoride) on carbon nanofibers deduced by thermoelectric analysis of their melt mixed films. Chinese J. Polym. Sci. 2024, 42, 1802–1810 DOI: 10.1007/s10118-024-3200-y.
A. J. Paleo, V. M. Serrato, J. M. Mánuel, et al. Doping Effect of Poly(vinylidene fluoride) on Carbon Nanofibers Deduced by Thermoelectric Analysis of Their Melt Mixed Films. [J]. Chinese Journal of Polymer Science, 2024,42(11):1802-1810. DOI: 10.1007/s10118-024-3200-y.
Electron transfer from the CNFs to the PVDF
computed using a Density Functional based Tight Binding (DFTB) Hamiltonian
responsible for the near-zero Seebeck coefficient found in melt mixed PVDF/CNF film.
The effect of temperature on the electrical conductivity (
σ
) and Seebeck coefficient (
S
) of n-type vapor grown carbon nanofibers (CNFs) and poly(vinylidene fluoride) (PVDF) melt-mixed with 15 wt% of those CNFs is analyzed. At 40 °C
the CNFs show stable n-type character (
S
=−4.8 μV·K
−1
) with an
σ
of
ca
.165 S·m
−1
while the PVDF/CNF composite film shows an
σ
of
ca
. 9 S·m
−1
and near-zero
S
(
S
=−0.5 μV·K
−1
). This experimental reduction in
S
is studied by the density functional tight binding (DFTB) method revealing a contact electron transfer from the CNFs to the PVDF in the interface. Moreover
in the temperature range from 40 °C to 100 °C
the
σ
(
T
) of the CNFs and PVDF/CNF film
successfully described by the 3D variable range hopping (VRH) model
is explained as consequence of a thermally activated backscattering mechanism. On the contrary
the
S
(
T
) from 40 °C to 100 °C of the PVDF/CNF film
which satisfactorily matches the model proposed for some multi-walled carbon nanotube (MWCNT) doped mats; however
it does not follow the increase in
S
(
T
) found for CNFs. All these findings are presented with the aim of discerning the role of these n-type vapor grown carbon nanofibers on the
σ
and S of their melt-mixed polymer composites.
Carbon nanofibersPoly(vinylidene fluoride)Seebeck coefficientP-type dopingDensity functional based tight bindingVariable range hopping
Ahmad, T.; Zhang, D. A critical review of comparative global historical energy consumption and future demand: the story told so far.Energy Rep.2020,6, 1973−1991..
Østergaard, P. A.; Duic, N.; Noorollahi, Y.; Kalogirou, S. Renewable energy for sustainable development.Renewable Energy2022,199, 1145−1152..
Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems.Science2008,321, 1457−1461..
Xu, Z. Y.; Wang, R. Z.; Yang, C. Perspectives for low-temperature waste heat recovery.Energy2019,176, 1037−1043..
El Hage, H.; Ramadan, M.; Jaber, H.; Khaled, M.; Olabi, A. G. A short review on the techniques of waste heat recovery from domestic applications.Energy Sources, Part A: Recovery, Utilization, and Environmental Effects2020,42, 3019−3034..
Lion, S.; Vlaskos, I.; Taccani, R. A review of emissions reduction technologies for low and medium speed marine Diesel engines and their potential for waste heat recovery.Energy Conv. Manag.2020,207, 112553..
Loni, R.; Najafi, G.; Bellos, E.; Rajaee, F.; Said, Z.; Mazlan, M. A review of industrial waste heat recovery system for power generation with Organic Rankine Cycle: Recent challenges and future outlook.J. Cleaner Prod.2021,287, 125070..
Mehdizadeh Dehkordi, A.; Zebarjadi, M.; He, J.; Tritt, T. M. Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials.Mater. Sci. Eng.: R: Rep.2015,97, 1−22..
Hamid Elsheikh, M.; Shnawah, D. A.; Sabri, M. F. M.; Said, S. B. M.; Haji Hassan, M.; Ali Bashir, M. B.; Mohamad, M. A review on thermoelectric renewable energy: principle parameters that affect their performance.Renew. Sustain. Energy Rev.2014,30, 337−355..
Crispin, X. Thermoelectrics: carbon nanotubes get high.Nat. Energy2016,1, 16037..
He, W.; Zhang, G.; Zhang, X.; Ji, J.; Li, G.; Zhao, X. Recent development and application of thermoelectric generator and cooler.Appl. Energy2015,143, 1−25..
Sootsman, J. R.; Chung, D. Y.; Kanatzidis, M. G. New and old concepts in thermoelectric materials.Angew. Chem. Int. Ed.2009,48, 8616−8639..
Tan, G.; Zhao, L.-D.; Kanatzidis, M. G. Rationally designing high-performance bulk thermoelectric materials.Chem. Rev.2016,116, 12123−12149..
Bhattacharya, S.; Pope, A. L.; Littleton, R. T., IV; Tritt, T. M.; Ponnambalam, V.; Xia, Y.; Poon, S. J. Effect of Sb doping on the thermoelectric properties of Ti-based half-Heusler compounds, TiNiSn1− xSb x.Appl. Phys. Lett.2000,77, 2476−2478..
Yu, C.; Kim, Y. S.; Kim, D.; Grunlan, J. C. Thermoelectric behavior of segregated-network polymer nanocomposites.Nano Lett.2008,8, 4428−4432..
Dang, Z. M.; Lin, Y. H.; Nan, C. W. Novel ferroelectric polymer composites with high dielectric constants.Adv. Mater.2003,15, 1625−1629..
Han, S.; Chen, S.; Jiao, F. Insulating polymers for flexible thermoelectric composites: a multi-perspective review.Compos. Commun.2021,28, 100914..
Paleo, A. J.; Krause, B.; Cerqueira, M. F.; Melle-Franco, M.; Pötschke, P.; Rocha, A. M. Thermoelectric properties of polypropylene carbon nanofiber melt-mixed composites: exploring the role of polymer on their Seebeck coefficient.Polym. J.2021,53, 1145−1152..
Kröning, K.; Krause, B.; Pötschke, P.; Fiedler, B. Nanocomposites with p- and n-type conductivity controlled by type and content of nanotubes in thermosets for thermoelectric applications.Nanomaterials2020,10, 1144..
Serrato, V. M.; Padilla, V.; Jones, D.; Herrera, S.; Campos, L.; Serrato III, I.; Foltz, H.; Lozano, K. Electromagnetic interference shielding effectiveness of compression molded carbon nanofiber-reinforced polyvinylidene difluoride film.Polym. Compos.2023,44, 592−608..
Paleo, A. J.; Vieira, E. M. F.; Wan, K.; Bondarchuk, O.; Cerqueira, M. F.; Goncalves, L. M.; Bilotti, E.; Alpuim, P.; Rocha, A. M. Negative thermoelectric power of melt mixed vapor grown carbon nanofiber polypropylene composites.Carbon2019,150, 408−416..
Saxena, P.; Shukla, P. A comprehensive review on fundamental properties and applications of poly(vinylidene fluoride) (PVDF).Adv. Compos. Hybrid Mater.2021,4, 8−26..
Mott, N. F. Conduction in glasses containing transition metal ions.J. Non-Crystalline Solids1968,1, 1−17..
Choi, Y. M.; Lee, D. S.; Czerw, R.; Chiu, P. W.; Grobert, N.; Terrones, M.; Reyes-Reyes, M.; Terrones, H.; Charlier, J. C.; Ajayan, P. M.; Roth, S.; Carroll, D. L.; Park, Y. W. Nonlinear behavior in the thermopower of doped carbon nanotubes due to strong, localized states.Nano Lett.2003,3, 839−842..
Jenschke, W.; Ullrich, M.; Krause, B.; Pötschke, P. Messanlage zur Untersuchung des Seebeck-Effektes in Polymermaterialien.tm - Technisches Messen2020,87, 495−503..
Krause, B.; Pötschke, P. Polyethylene glycol as additive to achieve N-conductive melt-mixed polymer/carbon nanotube composites for thermoelectric application.Nanomaterials2022,12, 3812..
Hourahine, B.; Aradi, B.; Blum, V.; Bonafé, F.; Buccheri, A.; Camacho, C.; Cevallos, C.; Deshaye, M. Y.; Dumitrică, T.; Dominguez, A.; Ehlert, S.; Elstner, M.; van der Heide, T.; Hermann, J.; Irle, S.; Kranz, J. J.; Köhler, C.; Kowalczyk, T.; Kubař, T.; Lee, I. S.; Lutsker, V.; Maurer, R. J.; Min, S. K.; Mitchell, I.; Negre, C.; Niehaus, T. A.; Niklasson, A. M. N.; Page, A. J.; Pecchia, A.; Penazzi, G.; Persson, M. P.; Řezáč, J.; Sánchez, C. G.; Sternberg, M.; Stöhr, M.; Stuckenberg, F.; Tkatchenko, A.; Yu, V. W.-z.; Frauenheim, T. DFTB+, a software package for efficient approximate density functional theory based atomistic simulations.J. Chem. Phys. 2020, 152..
Gaus, M.; Goez, A.; Elstner, M. Parametrization and benchmark of DFTB3 for organic molecules.J. Chem. Theory Comput.2013,9, 338−354..
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu.J. Chem. Phys. 2010, 132..
Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory.J. Comput. Chem.2011,32, 1456−1465..
Grimme, S.; Bannwarth, C.; Shushkov, P. A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z = 1–86).J. Chem. Theory Comput.2017,13, 1989−2009..
Marenich, A. V.; Jerome, S. V.; Cramer, C. J.; Truhlar, D. G. Charge Model 5: an extensionof hirshfeld population analysis for the accurate description of molecular interactions in gaseous and condensed phases.J. Chem. Theory Comput.2012,8, 527−541..
Boccaccio, T.; Bottino, A.; Capannelli, G.; Piaggio, P. Characterization of PVDF membranes by vibrational spectroscopy.J. Membr. Sci.2002,210, 315−329..
Cai, X.; Lei, T.; Sun, D.; Lin, L. A critical analysis of theα, βandγphases in poly(vinylidene fluoride) using FTIR.RSC Adv.2017,7, 15382−15389..
Vidhate, S.; Shaito, A.; Chung, J.; D'Souza, N. A. Crystallization, mechanical, and rheological behavior of polyvinylidene fluoride/carbon nanofiber composites.J. Appl. Polym. Sci.2009,112, 254−260..
Sun, L.; Wu, N.; Peng, R. Negative dielectric permittivity of PVDF nanocomposites induced by carbon nanofibers and polymer crystallization.J. Appl. Polym. Sci.2020,137, 49582..
Liu, J.; Lu, X.; Wu, C. Effect of preparation methods on crystallization behavior and tensile strength of poly(vinylidene fluoride) membranes.Membranes2013,3, 389−405..
Paleo, A. J.; Krause, B.; Mendes, A. R.; Tavares, C. J.; Cerqueira, M. F.; Muñoz, E.; Pötschke, P. Comparative thermoelectric properties of polypropylene composites melt-processed using Pyrograf®III carbon nanofibers.J. Compos. Sci.2023,7, 173..
Paleo, A. J.; Krause, B.; Cerqueira, M. F.; González-Domínguez, J. M.; Muñoz, E.; Pötschke, P.; Rocha, A. M. Thermoelectric properties of cotton fabrics dip-coated in pyrolytically stripped Pyrograf®III carbon nanofiber based aqueous inks.Materials2023,16, 4335..
Aldica, G. V.; Ciurea, M. L.; Chipara, D. M.; Lepadatu, A. M.; Lozano, K.; Stavarache, I.; Popa, S.; Chipara, M. Isotactic polypropylene-vapor grown carbon nanofibers composites: electrical properties.J. Appl. Polym. Sci.2017,134, 45297..
Paleo, A. J.; Krause, B.; Soares, D.; Melle-Franco, M.; Muñoz, E.; Pötschke, P.; Rocha, A. M. Thermoelectric properties of n-type poly(ether ether ketone)/carbon nanofiber melt-processed composites.Polymers2022,14, 4803..
Paleo, A. J.; Sencadas, V.; van Hattum, F. W. J.; Lanceros-Méndez, S.; Ares, A. Carbon nanofiber type and content dependence of the physical properties of carbon nanofiber reinforced polypropylene composites.Polym. Eng. Sci.2014,54, 117−128..
Krause, B.; Barbier, C.; Levente, J.; Klaus, M.; Pötschke, P. Screening of different carbon nanotubes in melt-mixed polymer composites with different polymer matrices for their thermoelectrical properties.J. Compos. Sci.2019,3, 106..
Bradley, K.; Jhi, S. H.; Collins, P. G.; Hone, J.; Cohen, M. L.; Louie, S. G.; Zettl, A. Is the intrinsic thermoelectric power of carbon nanotubes positive.Phys. Rev. Lett.2000,85, 4361−4364..
Paleo, A. J.; Krause, B.; Cerqueira, M. F.; Muñoz, E.; Pötschke, P.; Rocha, A. M. Nonlinear thermopower behaviour of n-type carbon nanofibres and their melt mixed polypropylene composites.Polymers 2022, 14..
Gusev, G. M.; Olshanetsky, E. B.; Kvon, Z. D.; Mikhailov, N. N.; Dvoretsky, S. A.; Portal, J. C. Quantum hall effect near the charge neutrality point in a two-dimensional electron-hole system.Phys. Rev. Lett.2010,104, 166401..
Mahanta, N. K.; Abramson, A. R.; Lake, M. L.; Burton, D. J.; Chang, J. C.; Mayer, H. K.; Ravine, J. L. Thermal conductivity of carbon nanofiber mats.Carbon2010,48, 4457−4465..
Liu, R.; Ge, Y.; Wang, D.; Shuai, Z. Understanding the temperature dependence of the seebeck coefficient from first-principles band structure calculations for organic thermoelectric materials.CCS Chem.2021,3, 1477−1483..
Paleo, A. J.; Krause, B.; Cerqueira, M. F.; Muñoz, E.; Pötschke, P.; Rocha, A. M. Electronic features of cotton fabric e-textiles prepared with aqueous carbon nanofiber inks.ACS Appl. Eng. Mater.2023,1, 122−131..
Mahan, G. D. Impurity resonances in carbon nanotubes.Phys. Rev. B 2004 ,69, 125407..
0
Views
10
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution