FOLLOWUS
a.A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russian Federation
b.Tula State Lev Tolstoy Pedagogical University, Tula 300026, Russian Federation
c.V. Topchiev Institute of Petrochemical Synthesis Russian Academy of Sciences, Moscow 119991, Russian Federation
d.Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region 141700, Russian Federation
e.N.S. Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow 117393, Russian Federation
anisimov.ineos@gmail.com
Published:30 November 2024,
Published Online:13 September 2024,
Received:25 March 2024,
Revised:29 May 2024,
Accepted:10 June 2024
Scan QR Code
Kim, E. E.; Ershova, T. O.; Belova, A. S.; Khanin, D. A.; Bashkova, E. V.; Nikiforova, G. G.; Kononevich, Y. N.; Anisimov, A. A.; Shchegolikhina, O. I.; Muzafarov, A. M. Luminescent composite films based on mechanically strong ladder-like polyphenylsilsesquioxane and oligophenyleuropiumsiloxane. Chinese J. Polym. Sci. 2024, 42, 1793–1801
E. E. Kim, T. O. Ershova, A. S. Belova, et al. Luminescent Composite Films Based on Mechanically Strong Ladder-like Polyphenylsilsesquioxane and Oligophenyleuropiumsiloxane. [J]. Chinese Journal of Polymer Science, 2024,42(11):1793-1801.
Kim, E. E.; Ershova, T. O.; Belova, A. S.; Khanin, D. A.; Bashkova, E. V.; Nikiforova, G. G.; Kononevich, Y. N.; Anisimov, A. A.; Shchegolikhina, O. I.; Muzafarov, A. M. Luminescent composite films based on mechanically strong ladder-like polyphenylsilsesquioxane and oligophenyleuropiumsiloxane. Chinese J. Polym. Sci. 2024, 42, 1793–1801 DOI: 10.1007/s10118-024-3190-9.
E. E. Kim, T. O. Ershova, A. S. Belova, et al. Luminescent Composite Films Based on Mechanically Strong Ladder-like Polyphenylsilsesquioxane and Oligophenyleuropiumsiloxane. [J]. Chinese Journal of Polymer Science, 2024,42(11):1793-1801. DOI: 10.1007/s10118-024-3190-9.
New luminescent composites based on ladder-like olyphenylsilsesquioxane were synthesized and fully investigated. Oligophenyleuropiumsiloxane showing good compatibility with the matrix was utilized as luminescent filler
and organosilicon
β
-diketones were used as “antenna” ligands. Composites demonstrate high luminescence intensity
transparency
mechanical strength and thermal stability
as well as sensitivity to ammonia vapors.
Nowadays organosilicon luminescent materials are of increasing interest due to the variety of their synthetic or modification techniques and application fields. Ladder polyphenylsilsesquioxanes (L-PPSQ) are a unique class of organosilicon polymers
which can be ideal matrices for the luminescent composites due to their high thermal stability
optical transparency and mechanical strength. In this work
new mechanically strong
heat-resistant
transparent and sensitive to ammonia vapor luminescent composite films based on L-PPSQ have been obtained. As the source of Europium ions oligophenyleuropiumsiloxane was used
demonstrating perfect compatibility to the matrix due to the similar nature. To improve luminescent properties of the films
new organosilicon ligands were introduced into the composites and their influence on the properties of the materials was studied. Valuable properties of described composites may allow their further application as multifunctional coatings.
Luminescent composite filmsLadder-like polyphenylsilsesquioxaneOligophenyleuropiumsiloxane
Iacob, M.; Airinei, A.; Asandulesa, M.; Dascalu, M.; Tudorachi, N.; Hernandez, L.; Cazacu, M. Silicone elastomers filled with rare earth oxides.Mater. Res. Expr.2020,7, 3..
Chen, K.; Kang, M.; Lu, A.; Chen, L.; Song, L.; Sun, R. Visualization of silica dispersion states in silicone rubber by fluorescent labeling.J. Mater. Sci.2019,54, 5149−5159,.
Xiong, Y.; Shen, S.; Kang, M.; Wang, Z.; Lu, A. Effect of fluorescence labeling on mechanical properties of silica filled silicone rubber.Polymer2020,208, 122904..
Pilch, M.; Ortyl, J.; Chachaj-Brekiesz, A.; Galek, M.; Popielarz, R. Europium-based luminescent sensors for mapping pressure distribution on surfaces.Sensors Actuators B Chem.2020,305, 127409,.
Wang, Y.; Liu, Y.; Xie, G.; Chen, J.; Li, P.; Zhang, Y.; Li, H. Highly luminescent and stable organic-inorganic hybrid films for transparent luminescent solar concentrators.ACS Appl. Mater. Interfaces2022,14, 5951−5958,.
Xie, G.; Wang, Y.; Zhou, X.; He, L.; Li, H. Eu3+/Tb3+Bimetallic complex-doped siloxane-polyether hybrid film for luminescent thermometry.J. Lumin.2023,253..
Palácio, G.; Boyer, D.; Therias, S.; Pulcinelli, S.H.; Mahiou, R.; Chadeyron, G.; Santilli, C. V Accelerated ultraviolet aging of structural and luminescent properties of the ureasil-polyether hybrid materials U-PEO:Eu3+and U-PPO:Eu3+.Polymer2019,177, 102−110,.
Pol’shchikova, N. V.; Sergienko, N. V.; Belova, A. S.; Kononevich, Y. N.; Ionov, D. S.; Khanin, D. A.; Buzin, M. I.; Nikiforova, G. G.; Shchegolikhina, O. I.; Muzafarov, A. M. Luminescent polymer films based on blocksil siloxane copolymers and phenyleuropiumsiloxane molecular filler.React. Funct. Polym.2023,186, 1−12,.
de Jesus, F. A.; Santana, B. V.; Bispo, G. F. da C.; Filho, C. I. da S.; Júnior, S. A.; Valério, M. E. G.; Caiut, J. M. A.; Sarmento, V. H. V. Fine tuning of polymer content for enhanced structure and luminescent properties of Eu3+:siloxane-poly(methyl methacrylate) hybrids to be applied in photonics.Polymer2019,181, 121767,.
You, C.; Kang, Y.; Kim, M. S.; Ahn, Y.; Kye, H.; Kim, B. G. Octagonal-siloxane based transparent and robust crack-healing surface for optical-scar recovery.Mater. Des.2022,215..
Yue, X.; Zeng, S.; Sun, R.; Li, Y.; Lu, A.; Kang, M.; Yu, F. Study on synthesis and mechanical properties of Eu3+-π/covalent hybrid crosslinked silicone rubber.Polym. Eng. Sci.2023, 1−10..
Wang, N.; Feng, L.; Xu, X.; Feng, S. Dynamic covalent bond cross-linked luminescent silicone elastomer with self-healing and recyclable properties.Macromol. Rapid Commun.2022,43, 2100885,.
Zhao, D.; Yang, J.; Wang, Y.; Li, H. Luminescent self-healing materials constructed via coordination between lanthanide ions and phenanthroline-tethered to polymer chain.Dye. Pig.2022,197, 109864,.
Temnikov, M. N.; Muzafarov, A. M. Polyphenylsilsesquioxanes. New structures-new properties.RSC Adv.2020,10, 43129−43152..
Gharaibeh, A.A.; Arafa, I.M.; Yousef, Y.A. Multi-band broad emission properties of fluoren-9-one oxime chemically and physically confined in a photoactive polyphenylsilsesquioxane network matrix.J. Inorg. Organomet. Polym. Mater.2011,21, 560−569,.
Zhang, W.; Niu, H.; Yang, C.; Wang, Y.; Lu, Q.; Zhang, X.; Niu, H.; Zhao, P.; Wang, W. Electrochromic and electrofluorochromic bifunctional materials for dual-mode devices based on ladder-like polysilsesquioxanes containing triarylamine.Dye. Pigment.2020,175, 108160,.
Chen, B.; Feng, J. White-light-emitting polymer composite film based on carbon dotsand lanthanide complexes.J. Phys. Chem. C2015,119, 7865−7872,.
Feng, J.; Zhang, H. Hybrid materials based on lanthanide organic complexes: a review.Chem. Soc. Rev.2013,42, 387−410,.
Manseki, K.; Yanagida, S. Photosensitized luminescent lanthanide (III) clusters encapsulated with polyphenylsilsesquioxane.Phys. Status Solidi Appl. Mater. Sci.2008,205, 23−25,.
Manseki, K.; Hasegawa, Y.; Wada, Y.; Yanagida, S. Photophysical properties of tetranuclear Eu(III) complexes in polyphenylsilsesqioxane (PPSQ).J. Alloys Compd.2006, 408–412, 805−808..
Moore, E. G.; Samuel, A. P. S.; Raymond, K. N. From antenna to assay: lessons learned in lanthanide luminescence.Acc. Chem. Res.2009,42, 542−552,.
Nehra, K.; Dalal, A.; Hooda, A.; Bhagwan, S.; Saini, R.K.; Mari, B.; Kumar, S.; Singh, D. Lanthanidesβ-diketonate complexes as energy-efficient emissive materials: a review.J. Mol. Struct.2022,1249, 131531,.
Reddy, M.L.P.; Divya, V.; Pavithran, R. Visible-light sensitized luminescent europium(III)-β-diketonate complexes: bioprobes for cellular imaging.Dalt. Trans.2013,42, 15249,.
Hasegawa, Y.; Kawai, H.; Nakamura, K.; Yasuda, N.; Wada, Y.; Yanagida, S. Molecular design of luminescent Eu(III) complexes as lanthanide lasing material and their optical properties.J. Alloys Compd.2006,408, 669−674,.
Nakamura, K.; Hasegawa, Y.; Kawai, H.; Yasuda, N.; Kanehisa, N.; Kai, Y.; Nagamura, T.; Yanagida, S.; Wada, Y. Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands.J. Phys. Chem. A2007,111, 3029−3037,.
Kim, E. E.; Kononevich, Y. N.; Dyuzhikova, Y. S.; Ionov, D. S.; Khanin, D. A.; Nikiforova, G. G.; Shchegolikhina, O. I.; Vasil’ev, V. G.; Muzafarov, A.M. Cross-linked luminescent polymers based onβ-diketone-modified polysiloxanes and organoeuropiumsiloxanes.Polymers2022,14, 2554..
Ershova, T. O.; Anisimov, A. A.; Temnikov, M. N.; Novikov, M. A.; Buzin, M. I.; Nikiforova, G. G.; Dyuzhikova, Y. S.; Ushakov, I. E.; Shchegolikhina, O. I.; Muzafarov, A. M. A versatile equilibrium method for the synthesis of high-strength, ladder-like polyphenylsilsesquioxanes with finely tunable molecular parameters.Polymers2021,13..
Anokhina, T. S.; Ershova, T. O.; Anisimov, A. A.; Temnikov, M. N.; Grushevenko, E. A.; Borisov, I. L.; Volkov, A. V.; Muzafarov, A. M. Pervaporation and gas separation properties of high-molecular ladder-like polyphenylsilsesquioxanes.Polymers2023,15, 1−13,.
Ionov, D. S.; Yurasik, G. A.; Kononevich, Y. N.; Surin, N. M.; Svidchenko, E. A.; Sazhnikov, V. A.; Muzafarov, A. M.; Alfimov, M. V. Ink-jet printing of chemosensing layers based on surface-functionalized silica nanoparticles.Nanotechnol. Russ.2017,12, 338−351,.
Fina, A.; Tabuani, D.; Carniato, F.; Frache, A.; Boccaleri, E.; Camino, G. Polyhedral Oligomeric Silsesquioxanes (POSS) Thermal Degradation.Thermochim. Acta2006,440, 36−42,.
Salom, C.; Horta, A.; Hernandez-Fuentes, I.; Pierola, I. F. Poly(phenylsiloxanes) electronic spectra.Macromolecules1987,20, 696−698,.
Binnemans, K. Interpretation of europium(III) spectra.Coord. Chem. Rev.2015,295, 1−45,.
Ma, Y.; Yoo, J. History of sunscreen: an updated view.J. Cosmet. Dermatol.2021,20, 1044−1049,.
Zou, W.; Ramanathan, R.; Urban, S.; Sinclair, C.; King, K.; Tinker, R.; Bansal, V. Sunscreen testing: a critical perspective and future roadmap.Trends Anal. Chem.2022,157, 116724,.
Voznesenskiy, S. S.; Sergeev, A. A.; Mirochnik, A. G.; Leonov, A. A.; Petrochenkova, N. V; Shishov, A. S.; Emelina, T. B.; Kulchin, Y. N. Specific features of europium tris- benzoylacetonate sensor response to gaseous ammonia.Sensors Actuators B. Chem.2017..
Xu, Y.; Zhang, X.; Zhang, W.; Liu, X.; Liu, Q. Chemistry fluorescent detector for NH3based on responsive europium (III) – salicylic acid complex hydrogels.J. Photochem. Photobiol. A Chem.2021,404, 112901,.
Li, M.; Lyu, Q.; Sun, L.; Peng, B.; Zhang, L.; Zhu, J. Fluorescent metallosupramolecular elastomers for fast and ultrasensitive humidity sensing.ACS Appl. Mater. Interfaces2020,12, 39665−39673,.
Yang, J.; Wang, T.; Guo, R.; Yao, D.; Guo, W.; Liu, S.; Li, Z.; Wang, Y.; Li, H. Self-healing material with reversible luminescence switch behavior.ACS Appl. Mater. Interfaces2020,12, 54026−54034,.
Zhao, D.; Yang, J.; Tian, X.; Wei, J.; Li, Q.; Wang, Y. Self-healing metallo-supramolecular polymers showing luminescence off/on switching based on lanthanide ions and terpyridine moieties.Chem. Eng. J.2022,434, 134806,.
0
Views
17
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution