FOLLOWUS
a.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
b.School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
gongmin@ustb.edu.cn (M.G.)
guojie.wang@mater.ustb.edu.cn (G.J.W.)
Published:01 December 2024,
Published Online:27 September 2024,
Received:09 May 2024,
Revised:07 June 2024,
Accepted:18 June 2024
Scan QR Code
Wu, Z.; Liao, K. F.; Xiao, L. P.; Zhong, S. J.; Gong, M.; Wang, G. J. Spiropyran-containing reusable and wearable all-in-one ultraviolet monitoring and shielding textiles for sun protection. Chinese J. Polym. Sci. 2024, 42, 1933–1940
ZHEN WU, KAI-FENG LIAO, LE-PING XIAO, et al. Spiropyran-Containing Reusable and Wearable All-in-One Ultraviolet Monitoring and Shielding Textiles for Sun Protection. [J]. Chinese journal of polymer science, 2024, 42(12): 1933-1940.
Wu, Z.; Liao, K. F.; Xiao, L. P.; Zhong, S. J.; Gong, M.; Wang, G. J. Spiropyran-containing reusable and wearable all-in-one ultraviolet monitoring and shielding textiles for sun protection. Chinese J. Polym. Sci. 2024, 42, 1933–1940 DOI: 10.1007/s10118-024-3188-3.
ZHEN WU, KAI-FENG LIAO, LE-PING XIAO, et al. Spiropyran-Containing Reusable and Wearable All-in-One Ultraviolet Monitoring and Shielding Textiles for Sun Protection. [J]. Chinese journal of polymer science, 2024, 42(12): 1933-1940. DOI: 10.1007/s10118-024-3188-3.
A ready-to-use
easy-to-interpret
inexpensive
reusable
and wearable all-in-one UV monitoring and shielding sensor SP-TPE@PU textile has been developed. The SP-TPE@PU textile can rapidly exhibit significant and reversible color changes due to the efficient isomerization of SP-TPE. Simple and easy operation
significant and reversible color changes
good breathability and mechanical properties make the SP-TPE@PU textiles ideal for sun protection and health management.
Moderate ultraviolet (UV) radiation from sunlight is essential for human health
but overexposure to UV rays can cause serious adverse effects. It is important to detect UV radiation from sunlight in time to prevent damage from excessive exposure. Here
a ready-to-use
easy-to-interpret
inexpensive
reusable
and wearable all-in-one UV monitoring and shielding sensor SP-TPE@PU textile has been developed. The SP-TPE@PU textiles are constructed by photochromic molecule SP-TPE and commercial polymer polyurethane (PU) through electrospinning. The SP-TPE molecule acts as the sensor component
and PU contributes to high flexibility. The SP-TPE@PU textiles show remarkable durability (against repeated twisting
curling
bending deformations
and water immersion) and good permeability
making them durable and breathable wearable materials. When exposed to sunlight
the SP-TPE@PU textiles rapidly exhibit significant color changes due to the efficient isomerization of SP-TPE
serving as an early warning and monitoring of UV radiation. In addition
the SP-TPE@PU textiles can revert to the initial state with visible light irradiation for reuse. Furthermore
the SP-TPE@PU textiles possess excellent UV shielding ability
contributing to human body protection. Simple and easy operation
significant and reversible color changes
good breathability and mechanical properties make SP-TPE@PU textiles reusable and wearable all-in-one UV monitoring and shielding sensors.
Sunlight sensorPhotochromic textilesReusable and wearableUltraviolet monitoring and shielding
Holick, M. F. Health benefits of vitamin D and sunlight: a D-bate.Nat. Rev. Endocrinol.2011,7, 73−75..
Heiskanen, V.; Pfiffner, M.; Partonen, T. Sunlight and health: shifting the focus from vitamin D3 to photobiomodulation by red and near-infrared light.Ageing Res. Rev.2020,61, 101089..
Akhtar, S. Vitamin D status in south Asian populations–risks and opportunities.Crit. Rev. Food Sci. Nutr.2016,56, 1925−1940..
Premi, S.; Wallisch, S.; Mano, C. M.; Weiner, A. B.; Bacchiocchi, A.; Wakamatsu, K.; Bechara, E. J. H.; Halaban, R.; Douki, T.; Brash, D. E. Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure.Science2015,347, 842−847..
Gu, Y.; Han, J.; Jiang, C.; Zhang, Y. Biomarkers, oxidative stress and autophagy in skin aging.Ageing Res. Rev.2020,59, 101036..
Hodis, E.; Watson, I. R.; Kryukov, G. V.; Arold, S. T.; Imielinski, M.; Theurillat, J. P.; Nickerson, E.; Auclair, D.; Li, L.; Place, C.; Dicara, D.; Ramos, A. H.; Lawrence, M. S.; Cibulskis, K.; Sivachenko, A.; Voet, D.; Saksena, G.; Stransky, N.; Onofrio, R. C.; Winckler, W.; Ardlie, K.; Wagle, N.; Wargo, J.; Chong, K.; Morton, D. L.; Stemke-Hale, K.; Chen, G.; Noble, M.; Meyerson, M.; Ladbury, J. E.; Davies, M. A.; Gershenwald, J. E.; Wagner, S. N.; Hoon, D. S.; Schadendorf, D.; Lander, E. S.; Gabriel, S. B.; Getz, G.; Garraway, L. A.; Chin, L. A landscape of driver mutations in melanoma.Cell2012,150, 251−263..
Feelisch, M.; Kolb-Bachofen, V.; Liu, D.; Lundberg, J. O.; Revelo, L. P.; Suschek, C. V.; Weller, R. B. Is sunlight good for our heart.Eur. Heart J.2010,31, 1041−1045..
Sun, H.; Qin, P.; Guo, J.; Jiang, Y.; Liang, Y.; Gong, X.; Ma, X.; Wu, Q.; Zhang, J.; Luo, L.; Wu, Z. Enhanced electron channel via the interfacial heterotropic electric field in dual S-scheme g-C3N4/WO3/ZnS photocatalyst for year-round antibiotic degradation under sunlight.Chem. Eng. J.2023,470, 144217..
Chen, J.; Ouyang, W.; Yang, W.; He, J. H.; Fang, X. Recent progress of heterojunction ultraviolet photodetectors: Materials, integrations, and applications.Adv. Funct. Mater.2020,30, 1909909..
Sang, L. W.; Liao, M. Y.; Sumiya, M. A comprehensive review of semiconductor ultraviolet photodetectors: From thin film to one-dimensional nanostructures.Sensors2013,13, 10482−10518..
Caldwell, J. D.; Aharonovich, I.; Cassabois, G.; Edgar, J. H.; Gil, B.; Basov, D. N. Photonics with hexagonal boron nitride.Nat. Rev. Mater.2019,4, 552−567..
Zhang, J.; Zou, Q.; Tian, H. Photochromic materials: more than meets the eye.Adv. Mater.2013,25, 378−399..
Cha, H.-Y.; Soloviev, S.; Zelakiewicz, S.; Waldrab, P.; Sandvik, P. M. Temperature dependent characteristics of nonreach-through 4H-SiC separate absorption and multiplication APDs for UV detection.IEEE Sens. J.2008,8, 233−237..
Li, H.; Zhao, L.; Meng, J.; Pan, C.; Zhang, Y.; Zhang, Y.; Liu, Z.; Zou, Y.; Fan, Y.; Wang, Z. L.; Li, Z. Triboelectric-polarization-enhanced high sensitive ZnO UV sensor.Nano Today2020,33, 100873..
Guo, D.; Su, Y.; Shi, H.; Li, P.; Zhao, N.; Ye, J.; Wang, S.; Liu, A.; Chen, Z.; Li, C.; Tang, W. Self-powered ultraviolet photodetector with superhigh photoresponsivity (3.05 A/W) based on the GaN/Sn:Ga2O3pn junction.ACS Nano2018,12, 12827−12835..
Wiedbrauk, S.; McKinnon, H.; Swann, L.; Boase, N. R. B. Diarylethene photoswitches and 3D printing to fabricate rewearable colorimetric UV sensors for sun protection.Adv. Mater. Technol.2023,8, 2201918..
Wen, G. Y.; Zhou, X. L.; Tian, X. Y.; Hu, T. Y.; Xie, R.; Ju, X. J.; Liu, Z.; Pan, D. W.; Wang, W.; Chu, L. Y. Real-time quantitative detection of ultraviolet radiation dose based on photochromic hydrogel and photo-resistance.Chem. Mater.2022,34, 7947−7958..
Bisoyi, H. K.; Li, Q. Light-driven liquid crystalline materials: From photo-induced phase transitions and property modulations to applications.Chem. Rev.2016,116, 15089−15166..
Jochum, F. D.; Theato, P. Temperature- and light-responsive smart polymer materials.Chem. Soc. Rev.2013,42, 7468−7483..
Zhang, J.; Wang, J.; Tian, H. Taking orders from light: Progress in photochromic bio-materials.Mater. Horiz.2014,1, 169−184..
Zou, W.; González, A.; Jampaiah, D.; Ramanathan, R.; Taha, M.; Walia, S.; Sriram, S.; Bhaskaran, M.; Dominguez-Vera, J. M.; Bansal, V. Skin color-specific and spectrally-selective naked-eye dosimetry of UVA, B and C radiations.Nat. Commun.2018,9, 3743..
Lee, M. E.; Armani, A. M. Flexible UV exposure sensor based on UV responsive polymer.ACS Sens.2016,1, 1251−1255..
Troche, K.; Ramaiyan, K.; Boyle, T. J.; Garzon, F. H. Bismuth oxychloride nanoflakes enabled high sensitivity colorimetric UV dosimetry.ACS Appl. Nano Mater.2023,6, 6259−6269..
Zhou, H.; Xue, C.; Weis, P.; Suzuki, Y.; Huang, S.; Koynov, K.; Auernhammer, G. K.; Berger, R.; Butt, H.-J.; Wu, S. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions.Nat. Chem.2017,9, 145−151..
Li, C.; Iscen, A.; Sai, H.; Sato, K.; Sather, N. A.; Chin, S. M.; Álvarez, Z.; Palmer, L. C.; Schatz, G. C.; Stupp, S. I. Supramolecular–covalent hybrid polymers for light-activated mechanical actuation.Nat. Mater.2020,19, 900−909..
Wu, Z.; Wang, Q.; Li, P.; Fang, B.; Yin, M. Photochromism of neutral spiropyran in the crystalline state at room temperature.J. Mater. Chem. C2021,9, 6290−6296..
Zhang, C.; Zhou, H.; Liao, L.; Feng, W.; Sun, W.; Li, Z.; Xu, C.; Fang, C.; Sun, L.; Zhang, Y.; Yan, C. Luminescence modulation of ordered upconversion nanopatterns by a photochromic diarylethene: Rewritable optical storage with nondestructive readout.Adv. Mater.2010,22, 633..
Miao, W.; Wang, S.; Liu, M. Reversible quadruple switching with optical, chiroptical, helicity, and macropattern in self-assembled spiropyran gels.Adv. Funct. Mater.2017,27, 1701368..
Klajn, R. Spiropyran-based dynamic materials.Chem. Soc. Rev.2014,43, 148−184..
Li, C.; Liu, J.; Qiu, X.; Yang, X.; Huang, X.; Zhang, X. Photoswitchable and reversible fluorescent eutectogels for conformal information encryption.Angew. Chem. Int. Ed.2023,62, e202313971..
Shi, S.; Li, K. D.; Li, Y. X.; Ma, Z. D.; Qi, S. C.; Liu, X. Q.; Sun L. B. Spiropyran-embedded metal-organic frameworks with thermoresponsiveness for tunable gas adsorption.ACS Materials Lett.2023,5, 2189−2196..
Xu, T. Y.; Tong, F.; Xu, H.; Wang, M. Q.; Tian, H.; Qu, D. H. Engineering photomechanical molecular crystals to achieve extraordinary expansion based on solid-state [2 + 2]photocycloaddition.J. Am. Chem. Soc.2022,144, 6278−6290..
Xu, W. C.; Sun, S.; Wu, S. Photoinduced reversible solid-to-liquid transitions for photoswitchable materials.Angew. Chem. Int. Ed.2019,58, 9712−9740..
Irie, M. Diarylethenes for memories and switches.Chem. Rev.2000,100, 1685−1716..
Kortekaas, L.; Browne, W. R. The evolution of spiropyran: Fundamentals and progress of an extraordinarily versatile photochrome.Chem. Soc. Rev.2019,48, 3406−3424..
Sun, F.; Wang, D. Toward real-world applications: Promoting fast and efficient photoswitching in the solid state.J. Mater. Chem. C2022,10, 13700−13716..
Mo, S.; Meng, Q.; Wan, S.; Su, Z.; Yan, H.; Tang, B. Z.; Yin, M. Tunable mechanoresponsive self-assembly of an amide-linked dyad with dual sensitivity of photochromism and mechanochromism.Adv. Funct. Mater.2017,27, 1701210..
Wan, S.; Ma, Z.; Chen, C.; Li, F.; Wang, F.; Jia, X.; Yang, W.; Yin, M. A supramolecule-triggered mechanochromic switch of cyclodextrin-jacketed rhodamine and spiropyran derivatives.Adv. Funct. Mater.2016,26, 353−364..
Wu, Z.; Xiao, L.; Xu, R.; Zhong, S.; Gong, M.; Wang, G. UV-light-induced morphological transformation of spiropyran assemblies from irregular sheet-like structures to nanospheres.Langmuir2023,39, 13946−13952..
Wu, H.; Wu, W.; Hu, L.; Zhu, J.; Li, Q.; Gao, Y.; Wei, Y.; Jiang, G.; Yang, Y. Time-resolved encryption from a spiropyran derivative: High-contrasted and multi-state mechanochromism, photochromism and thermochromism.Chem. Eng. J.2023,469, 143781..
Zheng, H. Q.; Yang, Y.; Wang, Z.; Yang, D.; Qian, G.; Cui, Y. Photo-stimuli-responsive dual-emitting luminescence of a spiropyran-encapsulating metal–organic framework for dynamic information encryption.Adv. Mater.2023,35, 2300177..
Mouren, A.; Avérous, L. Sustainable cycloaliphatic polyurethanes: From synthesis to applications.Chem. Soc. Rev.2023,52, 277−317..
Kim, J. K.; Krishna-Subbaiah, N.; Wu, Y.; Ko, J.; Shiva, A.;Sitti, M. Enhanced flexible mold lifetime for roll-to-roll scaled-up manufacturing of adhesive complex microstructures.Adv. Mater.2023,35, 2207257..
Milroy, C.; Manthiram, A. An elastic, conductive, electroactive nanocomposite binder for flexible sulfur cathodes in lithium–sulfur batteries.Adv. Mater.2016,28, 9744−9751..
Wu, Z.; Pan, K.; Mo, S.; Wang, B.; Zhao, X.; Yin, M. Tetraphenylethene-induced free volumes for the isomerization of spiropyran toward multifunctional materials in the solid state.ACS Appl. Mater. Interfaces2018,10, 30879−30886..
Wang, X.; Xu, B.; Tian, W. Solid-state luminescent molecular photoswitches.Acc. Mater. Res.2023,4, 311−322..
Qi, Q.; Li, C.; Liu, X.; Jiang, S.; Xu, Z.; Lee, R.; Zhu, M.; Xu, B.; Tian, W. Solid-state photoinduced luminescence switch for advanced anticounterfeiting and super-resolution imaging applications.J. Am. Chem. Soc.2017,139, 16036−16039..
Fang, B.; Chu, M.; Tan, L.; Li, P.; Hou, Y.; Shi, Y.; Zhao, Y. S.; Yin, M. Near-infrared microlasers from self-assembled spiropyrane-based microsphercial caps.ACS Appl. Mater. Interfaces2019,11, 38226−38231..
Yang, R.; Jiao, Y.; Wang, B.; Xu, B.; Tian, W. Solid-state reversible dual fluorescent switches for multimodality optical memory.J. Phys. Chem. Lett.2021,12, 1290..
Harada, J.; Kawazoe, Y.; Ogawa, K. Photochromism of spiropyrans and spirooxazines in the solid state: Low temperature enhances photocoloration.Chem. Commun.2010,46, 2593−2595..
Williams, D. E.; Martin, C. R.; Dolgopolova, E. A.; Swifton, A.; Godfrey, D. C.; Ejegbavwo, O. A.; Pellechia, P. J.; Smith, M. D.; Shustova, N. B. Flipping the switch: Fast photoisomerization in a confined environment.J. Am. Chem. Soc.2018,140, 7611−7622..
Kundu, P. K.; Olsen, G. L.; Kiss, V.; Klajn, R. Nanoporous frameworks exhibitingmultiple stimuli responsiveness.Nat. Commun.2014,5, 3588..
Miyamoto, A.; Lee, S.; Cooray, N. F.; Lee, S.; Mori, M.; Matsuhisa, N.; Jin, H.; Yoda, L.; Yokota, T.; Itoh, A.; Sekino, M.; Kawasaki, H.; Ebihara, T.; Amagai, M.; Someya, T. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes.Nat. Nanotechnol.2017,12, 907−913..
Gong, M.; Wan, P.; Ma, D.; Zhong, M.; Liao, M.; Ye, J.; Shi, R.; Zhang, L. Flexible breathable nanomesh electronic devices for on-demand therapy.Adv. Funct. Mater.2019,29, 1902127..
Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer.J. Comput. Chem.2012,33, 580−592..
Zhang, Y.; Ng, M.; Hong, E. Y. H.; Chan, A. K. W.; Wu, N. M. W.; Chan, M. H. Y.; Wu, L.; Yam, V. W. W. Synthesis and photoswitchable amphiphilicity and self-assembly properties of photochromic spiropyran derivatives.J. Mater. Chem. C2020,8, 13676−13685..
Ren, H.; Li, S.; Wang, B.; Zhang, Y.; Wang, T.; Lv, Q.; Zhang, X.; Wang, L.; Han, X.; Jin, F.; Bao, C.; Yan, P.; Zhang, N.; Wang, D.; Cheng, T.; Liu, H.; Dou, S. Molecular-crowding effect mimicking cold-resistant plants to stabilize the zinc anode with wider service temperature range.Adv. Mater.2023,35, 2208237..
Yang, J.; Xu, Z.; Wang, J.; Gai, L.; Ji, X.; Jiang, H.; Liu, L. Antifreezing zwitterionic hydrogel electrolyte with high conductivity of 12.6 mS cm−1at −40 °C through hydrated lithium ion hopping migration.Adv. Funct. Mater.2021,31, 2009438..
Yue, L.; Gong, M.; Wang, J.; Ma, S.; Chen, Q.; Kong, X.; Lin, X.; Zhang, L.; Wu, Z.; Wang, D. Hygroscopic MXene/protein nanocomposite fibers enabling highly stretchable, antifreezing, repairable, and degradable skin-like wearable electronics.ACS Mater. Lett.2023,5, 2104−2113..
0
Views
116
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution