FOLLOWUS
a.State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
b.Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
penghs@fudan.edu.cn
Published:01 December 2024,
Published Online:13 September 2024,
Received:18 April 2024,
Revised:26 May 2024,
Accepted:03 June 2024
Scan QR Code
Xu, J. N.; Zeng, K. W.; Zhang, Y. F.; Yang, Y. B.; Liu, Z. W.; Liu, Y.; Wang, J. J.; Zhang, K. L.; Wu, Y. R. Z.; Sun, H.; Peng, H. S. High performance microwave absorption material based on metal-backboned polymer. Chinese J. Polym. Sci. 2024, 42, 1881–1887
JIA-NING XU, KAI-WEN ZENG, YI-FENG ZHANG, et al. High Performance Microwave Absorption Material Based on Metal-Backboned Polymer. [J]. Chinese journal of polymer science, 2024, 42(12): 1881-1887.
Xu, J. N.; Zeng, K. W.; Zhang, Y. F.; Yang, Y. B.; Liu, Z. W.; Liu, Y.; Wang, J. J.; Zhang, K. L.; Wu, Y. R. Z.; Sun, H.; Peng, H. S. High performance microwave absorption material based on metal-backboned polymer. Chinese J. Polym. Sci. 2024, 42, 1881–1887 DOI: 10.1007/s10118-024-3181-x.
JIA-NING XU, KAI-WEN ZENG, YI-FENG ZHANG, et al. High Performance Microwave Absorption Material Based on Metal-Backboned Polymer. [J]. Chinese journal of polymer science, 2024, 42(12): 1881-1887. DOI: 10.1007/s10118-024-3181-x.
A new carbon/nickel microwave absorption material is produced from nickel-based metal-backboned polymers through a thermal reduction method. It shows a minimum reflection loss of −49.1 dB at 13.04 GHz due to the molecule-level nickel doping for stable heterogeneous interface between carbon and metal nickel regions.
Metal-backboned polymers with anisotropy microstructures are promising for conductive
optoelectronic
and magnetic functional materials. However
the structure-property relationships governing the interplay between the chemical structure and electromagnetic property of the metal-backboned polymer have been rarely investigated. Here we report a carbon/nickel hybrid from metal-backboned polymer to serve as electromagnetic wave-absorbing materials
which exhibit high microwave absorption capacity and tunable absorption band. The presence of nickel backbones promote the generation of heterogeneous interfaces with carbon during calcination
thereby enhancing the wave-absorbing capacity of the carbon/nickel hybrid. The C/Ni hybrids show a minimal reflection loss of −49.1 dB at 13.04 GHz
and its frequency of the absorption band can be adjusted by controlling the thickness of the absorption layer.
NickelMetal-backboned polymerCarbonHybrid material
Green, J. J.; Elisseeff, J. H. Mimicking biological functionality with polymers for biomedical applications.Nature2016,540, 386−394..
Wu, Q.; Rauscher, P. M.; Lang, X.; Wojtecki, R. J.; de Pablo, J. J.; Hore, M. J. A.; Rowan, S. J. Poly[n]catenanes: Synthesis of molecular interlocked chains.Science2017,358, 1434−1439..
Zeng, Y.; Gordiichuk, P.; Ichihara, T.; Zhang, G.; Sandoz-Rosado, E.; Wetzel, E. D.; Tresback, J.; Yang, J.; Kozawa, D.; Yang, Z.; Kuehne, M.; Quien, M.; Yuan, Z.; Gong, X.; He, G.; Lundberg, D. J.; Liu, P.; Liu, A. T.; Yang, J. F.; Kulik, H. J.; Strano, M. S. Irreversible synthesis of an ultrastrong two-dimensional polymeric material.Nature2022,602, 91−95..
Fratini, S.; Nikolka, M.; Salleo, A.; Schweicher, G.; Sirringhaus, H. Charge transport in high-mobility conjugated polymers and molecular semiconductors.Nat. Mater.2020,19, 491−502..
Ke, L.; Wei, F.; Xie, L.; Karges, J.; Chen, Y.; Ji, L.; Chao, H. A biodegradable iridium(III) coordination polymer for enhanced two-photon photodynamic therapy using an apoptosis-ferroptosis hybrid pathway.Angew. Chem. Int. Ed.2022,61, e202205429..
Sun, L.; Lu, M.; Yang, Z.; Yu, Z.; Su, X.; Lan, Y. Q.; Chen, L. Nickel glyoximate based metal-covalent organic frameworks for efficient photocatalytic hydrogen evolution.Angew. Chem. Int. Ed.2022,61, e202204326..
Shirakawa, H.; Louis, E. J.; Macdiarmid, A. G.; Chiang, C. K.; Heeger, A. J. Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)X.J. Chem. Soc., Chem. Commun. 1977 , 578–580..
Snook, G. A.; Kao, P.; Best, A. S. Conducting-polymer-based supercapacitor devices and electrodes.J. Power Sources2011,196, 1−12..
Tourillon, G.; Garnier, F. Effect of dopant on the physicochemical and electrical-properties of organic conducting polymers.J. Phys. Chem.1983,87, 2289−2292..
Su, W. P.; Schrieffer, J. R.; Heeger, A. J. Solitons in polyacetylene.Phys. Rev. Lett.1979,42, 1698−1701..
Tsumura, A.; Koezuka, H.; Ando, T. Macromolecular electronic device: field-effect transistor with a polythiophene thin film.Appl. Phys. Lett.1986,49, 1210−1212..
Roncali, J. Conjugated poly(thiophenes): synthesis, functionalization, and applications.Chem. Rev.1992,92, 711−738..
Wu, Z.; Cheng, H. W.; Jin, C.; Yang, B.; Xu, C.; Pei, K.; Zhang, H.; Yang, Z.; Che, R. Dimensional design and core-Shell engineering of nanomaterials for electromagnetic wave absorption.Adv. Mater.2022,34, e2107538..
Liu, J.; Jia, Z.; Zhou, W.; Liu, X.; Zhang, C.; Xu, B.; Wu, G. Self-assembled MoS2/magnetic ferrite CuFe2O4nanocomposite for high-efficiency microwave absorption.Chem. Eng. J.2022,429, 132253..
Zeng, K. W.; Peng, H. S. Metal-backboned polymer: conception, design and synthesis.Chinese J. Polym. Sci.2022,41, 3−6..
Zhang, Y. F.; Zeng, K. W.; Yang, Y. B.; Tang, W. Q.; Peng, H. S. Quantum chemical calculation of metal-backboned polymer.Acta Polymerica Sinica(in Chinese)2023,54, 413−417..
Zeng, K.; Yang, Y.; Xu, J.; Wang, N.; Tang, W.; Xu, J.; Zhang, Y.; Wu, Y.; Xu, Y.; Wang, G.; Chen, P.; Wang, B.; Sun, X.; Jin, G.; Peng, H. Metal-backboned polymers with well-defined lengths.Angew. Chem. Int. Ed.2023,62, e202216060..
Vidal, F.; Jakle, F. Functional polymeric materials based onmain-group elements.Angew. Chem. Int. Ed.2019,58, 5846−5870..
Ning, W.; Zeng, K.; Zheng, Y.; Jiang, H.; Yang, Y.; Zhang, Y.; Li, D.; Yu, S.; Qian, Y.;Peng, H. High-performance thermoelectric fibers from metal-backboned polymers for body-temperature wearable power devices.Angew. Chem. Int. Ed. 2024 , e202403415..
Rao, L.; Wang, L.; Yang, C.; Zhang, R.; Zhang, J.; Liang, C.; Che, R. Confined diffusion strategy for customizing magnetic coupling spaces to enhance low-frequency electromagnetic wave absorption.Adv. Funct. Mater.2023,33, 221325..
Wang, M.; Tang, X. H.; Cai, J. H.; Wu, H.; Shen, J. B.; Guo, S. Y. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: a review.Carbon2021,177, 377−402..
Zhang, K.; Xia, X.; Deng, S.; Zhong, Y.; Xie, D.; Pan, G.; Wu, J.; Liu, Q.; Wang, X.; Tu, J. Nitrogen-doped sponge Ni fibers as highly efficient electrocatalysts for oxygen evolution reaction.Nano-Micro Lett.2019,11, 21..
Sun,C.; Zhao, P.; Yang, Y.; Li, Z.; Sheng, W. Lattice oxygen-inducedd-band shifting for enhanced hydrogen oxidation reaction on nickel.ACS Catal.2022,12, 11830−11837..
Singh, P.; Babbar, V. K.; Razdan, A.; Puri, R. K.; Goel, T. C. Complex permittivity, permeability, and X-band microwave absorption of CaCoTi ferrite composites.J. Appl. Phys.2000,87, 4362−4366..
Che, R. C.; Peng, L. M.; Duan, X. F.; Chen, Q.; Liang, X. L. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes.Adv. Mater.2004,16, 401−405..
Gong, C. H.; Zhang, J. W.; Zhang, X. F.; Yu, L. G.; Zhang, P. Y.; Wu, Z. S.; Zhang, Z. J. Strategy for ultrafine Ni fibers and investigation of the electromagnetic characteristics.J. Phys. Chem. C2010,114, 10101−10107..
Tong, G. X.; Liu, F. T.; Wu, W. H.; Du, F. F.; Guan, J. G. Rambutan-like Ni/MWCNT heterostructures: Easy synthesis, formation mechanism, and controlled static magnetic and microwave electromagnetic characteristics.J. Mater. Chem. A2014,2, 7373−7382..
Lu, M. M.; Cao, M. S.; Chen, Y. H.; Cao, W. Q.; Liu, J.; Shi, H. L.; Zhang, D. Q.; Wang, W. Z.; Yuan, J. Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: A smart absorber prototype varying temperature to tune intensities.ACS Appl. Mater. Interfaces2015,7, 19408−19415..
Lv, J.; Liang, X. H.; Ji, G. B.; Quan, B.; Liu, W.; Du, Y. W. Structural and carbonized design of 1D FeNi/C nanofibers with conductive network to optimize electromagnetic parameters and absorption abilities.ACS Sustainable Chem. Eng.2018,6, 7239−7249..
Sun, G. B.; Wu, H.; Liao, Q. L.; Zhang, Y. Enhanced microwave absorption performance of highly dispersed CoNi nanostructures arrayed on graphene.Nano Res.2018,11, 2689−2704..
Zhao, B.; Zhang, X.; Deng, J.; Bai, Z.; Liang, L.; Li, Y.; Zhang, R. A novel sponge-like 2D Ni/derivative heterostructure to strengthen microwave absorption performance.Phys. Chem. Chem. Phys.2018,20, 28623−28633..
Huo, Y.; Zhao, K.; Xu, Z. L.; Tang, Y. F. Electrospinning synthesis of SiC/Carbon hybrid nanofibers with satisfactory electromagnetic wave absorption performance.J. Alloy. Compd.2020,815, 152458..
Shen, Y. Q.; Wei, Y. P.; Ma, J. Q.; Zhang, Y. C.; Ji, B. H.; Tang, J.; Zhang, L. Y.; Yan, P. Z.; Du, X. Y. Self-cleaning functionalized FeNi/NiFeO/NiO/C nanofibers with enhanced microwave absorption performance.Ceram. Int.2020,46, 13397−13406..
Zhang, X. C.; Zhang, X.; Yuan, H. R.; Li, K. Y.; Ouyang, Q. Y.; Zhu, C. L.; Zhang, S.; Chen, Y. J. CoNi nanoparticles encapsulated by nitrogen-doped carbon nanotube arrays on reduced graphene oxide sheets for electromagnetic wave absorption.Chem. Eng. J.2020,383, 123208..
Guo, R.; Su, D.; Chen, F.; Cheng, Y.; Wang, X.; Gong, R.; Luo, H. Hollow beaded Fe3C/N-doped carbon fibers toward broadband microwave absorption.ACS Appl. Mater. Interfaces2022,14, 3084−3094..
Liu, P.; Gao, T.; He, W.; Liu, P. Electrospinning of hierarchical carbon fibers with multi-dimensional magnetic configurations toward prominent microwave absorption.Carbon2023,202, 244−253..
Sun, H.; Che, R.; You, X.; Jiang, Y.; Yang, Z.; Deng, J.; Qiu, L.; Peng, H. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities.Adv. Mater.2014,26, 8120−8125..
Di, X.; Wang, Y.; Fu, Y.; Wu, X.; Wang, P. Wheat flour-derived nanoporous carbon@ZnFe2O4hierarchical composite as an outstanding microwave absorber.Carbon2021,173, 174−184..
Ding, C.; Fu, H.; Wu, T.; Li, Y.; Wu, S.; Ren, X.; Gao, Z.; Guo, K.; Xia, L.; Wen, G.; Huang, X. Wave-transparent LAS enabling superior bandwidth electromagnetic wave absorption of a 2D pitaya carbon slice.J. Mater. Chem. A2022,10, 17603−17613..
Li, Y.; Gao, D.; Guo, Y.; Wei, W.; Wang, Y.; Jiang, H.; Peng, F.; Meng, F.; Zhou, Z. A temperature-responsive composite for adaptive microwave absorption.Chem. Eng. J.2022,427, 131746..
Luo, H.; Lv, S.; Liu, G.; Cheng, Y.; Ge, X.; Wang, X.; Gong, R.; Chen, F. Multi-interfacial magnetic carbon nanotubes encapsulated hydrangea-like NiMo/MoC/N-doped carbon composites for efficient microwave absorption.Carbon2022,196, 828−839..
Liang, L.; Gu, W.; Wu, Y.; Zhang, B.; Wang, G.; Yang, Y.; Ji, G. Heterointerface engineering in electromagnetic absorbers: new insights and opportunities.Adv. Mater.2022,34, e2106195..
Gbadamasi, S.; Mohiuddin, M.; Krishnamurthi, V.; Verma, R.; Khan, M. W.; Pathak, S.; Kalantar-Zadeh, K.; Mahmood, N. Interface chemistry of two-dimensional heterostructures - fundamentals to applications.Chem. Soc. Rev.2021,50, 4684−4729..
He, Y.; Wang, Y.; Ren, L.; He, Q.; Wu, D.; Deng, S.; Wu, G. Construction of heterointerfaces and honeycomb-like structure for ultrabroad microwave absorption.J. Colloid Interface Sci.2022,627, 102−112..
Qin, M.; Zhang, L.; Wu, H. Dielectric loss mechanism in electromagnetic wave absorbing materials.Adv. Sci.2022,9, e2105553..
Zhang, Y.; Wang, X.; Cao, M. Confinedly implanted NiFe2O4-rGO: cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption.Nano Res.2018,11, 1426−1436..
Wen, C.; Li, X.; Zhang, R.; Xu, C.; You, W.; Liu, Z.; Zhao, B.; Che, R. High-density anisotropy magnetism enhanced microwave absorption performance in Ti3C2T xMXene@Ni microspheres.ACS Nano2022,16, 1150−1159.
0
Views
24
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution