Upcycling of Poly(butylene adipate-co-terephthalate) into Dual Covalent Adaptable Networks through Chain Breaking-Crosslinking Strategy
RESEARCH ARTICLE|Updated:2024-09-23
|
Upcycling of Poly(butylene adipate-co-terephthalate) into Dual Covalent Adaptable Networks through Chain Breaking-Crosslinking Strategy
Chinese Journal of Polymer ScienceVol. 42, Issue 10, Pages: 1505-1513(2024)
Affiliations:
a.Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
b.Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Divisions of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
c.University of Chinese Academy of Sciences, Beijing 100049, China
Wang, B. B.; Huang, R.; Wang, X.; Jiang, T.; Wang, Y.; Du, S.; Li, F. L.; Zhu, J.; Ma, S. Q. Upcycling of poly(butylene adipate-co-terephthalate) into dual covalent adaptable networks through chain breaking-crosslinking strategy. Chinese J. Polym. Sci. 2024, 42, 1505–1513
Bin-Bo Wang, Rong Huang, Xin Wang, et al. Upcycling of Poly(butylene adipate-co-terephthalate) into Dual Covalent Adaptable Networks through Chain Breaking-Crosslinking Strategy. [J]. Chinese Journal of Polymer Science 42(10):1505-1513(2024)
Wang, B. B.; Huang, R.; Wang, X.; Jiang, T.; Wang, Y.; Du, S.; Li, F. L.; Zhu, J.; Ma, S. Q. Upcycling of poly(butylene adipate-co-terephthalate) into dual covalent adaptable networks through chain breaking-crosslinking strategy. Chinese J. Polym. Sci. 2024, 42, 1505–1513 DOI: 10.1007/s10118-024-3179-4.
Bin-Bo Wang, Rong Huang, Xin Wang, et al. Upcycling of Poly(butylene adipate-co-terephthalate) into Dual Covalent Adaptable Networks through Chain Breaking-Crosslinking Strategy. [J]. Chinese Journal of Polymer Science 42(10):1505-1513(2024) DOI: 10.1007/s10118-024-3179-4.
Upcycling of Poly(butylene adipate-co-terephthalate) into Dual Covalent Adaptable Networks through Chain Breaking-Crosslinking Strategy
-terephthalate) was efficiently upcycled into performance-enhanced dual covalent adaptable networks via chain breaking-crosslinking strategy while maintaining degradability and processability.
Abstract
Poly(butylene adipate-
co
-terephthalate) (PBAT)
a widely studied biodegradable material
has not effectively addressed the problem of plastic waste. Taking into consideration the cost-effectiveness
upcycling PBAT should take precedence over direct composting degradation. The present work adopts a chain breaking-crosslinking strategy
upcycling PBAT into dual covalent adaptable networks (CANs). During the chain-breaking stage
the ammonolysis between PBAT and polyethyleneimine (PEI) established the primary crosslinked network. Subsequently
styrene maleic anhydride copolymer (SMA) reacted with the hydroxyl group
culminating in the formation of dual covalent adaptable networks. In contrast to PBAT
the PBAT-dual-CANs exhibited a
notable Young's modulus of 239 MPa
alongside an inherent resistance to creep and solvents. Owing to catalysis from neighboring carboxyl group and excess hydroxyl groups
the PBAT-dual-CANs exhibited fast stress relaxation. Additionally
they could be recycled through extrusion and hot-press reprocessing
while retaining their biodegradability. This straightforward strategy offers a solution for dealing with plastic waste.
Baca, D.; Monroy, R.; Castillo, M.; Elkhazraji, A.; Farooq, A.; Ahmad, R. Dioxins and plastic waste: a scientometric analysis and systematic literature review of the detection methods.Environ. Adv.2023,13, 100439..
Kaiser, K.; Schmid, M.; Schlummer, M. Recycling of polymer-based multilayer packaging: a review.Recycling2018,3, 1..
Li, H.; Aguirre-Villegas, H. A.; Allen, R. D.; Bai, X.; Benson, C. H.; Beckham, G. T.; Bradshaw, S. L.; Brown, J. L.; Brown, R. C.; Cecon, V. S.; Curley, J. B.; Curtzwiler, G. W.; Dong, S.; Gaddameedi, S.; García, J. E.; Hermans, I.; Kim, M. S.; Ma, J.; Mark, L. O.; Mavrikakis, M.; Olafasakin, O. O.; Osswald, T. A.; Papanikolaou, K. G.; Radhakrishnan, H.; Sanchez Castillo, M. A.; Sánchez-Rivera, K. L.; Tumu, K. N.; Van Lehn, R. C.; Vorst, K. L.; Wright, M. M.; Wu, J.; Zavala, V. M.; Zhou, P.; Huber, G. W. Expanding plastics recycling technologies: chemical aspects, technology status and challenges.Green Chem.2022,24, 8899−9002..
Naderi Kalali, E.; Lotfian, S.; Entezar Shabestari, M.; Khayatzadeh, S.; Zhao, C.; Yazdani Nezhad, H. A critical review of the current progress of plastic waste recycling technology in structural materials.Curr. Opin. Green Sust.2023,40, 100763..
Verma, R.; Vinoda, K. S.; Papireddy, M.; Gowda, A. N. S. Toxic pollutants from plastic waste- A review.Procedia Environ. Sci.2016,35, 701−708..
Canopoli, L.; Fidalgo, B.; Coulon, F.; Wagland, S. T. Physico-chemical properties of excavated plastic from landfill mining and current recycling routes.Waste Manage.2018,76, 55−67..
Roy, S.; Ghosh, T.; Zhang, W.; Rhim, J. W. Recent progress in PBAT-based films and food packaging applications: a mini-review.Food Chem.2024,437, 137822..
Elvers, D.; Song, C. H.; Steinbüchel, A.; Leker, J. Technology trends in biodegradable polymers: evidence from patent analysis.Polym. Rev.2016,56, 584−606..
Shah, M. Z.; Quraishi, M.; Sreejith, A.; Pandit, S.; Roy, A.; Khandaker, M. U. Sustainable degradation of synthetic plastics: a solution to rising environmental concerns.Chemosphere2024,352, 141451..
Luo, X.; Muttaqin, F.; Zhang, Y. Investigating non-petroleum-based biodegradable polymers as eco-friendly and sustainable materials in asphalt modification: a review on natural rubbers and natural oils.J. Clean. Prod.2024,436, 140483..
Wang, Y.; van Putten, R.; Tietema, A.; Parsons, J. R.; Gruter, G. M. Polyester biodegradability: importance and potential for optimisation.Green Chem.2024,26, 3698−3716..
Chan, Q.; Alias, S. A.; Quek, S. W.; Ng, C. Y.; Ku Marsilla, K. I. A review of the preparations, properties, and applications of smart biodegradable polymers.Polym. Plast. Technol. Mater.2023,62, 1273−1289..
Scaffaro, R.; Maio, A.; Sutera, F.; Gulino, E. F.; Morreale, M. Degradation and recycling of films based on biodegradable polymers: A short review.Polymers2019,11, 651..
Bartolucci, L.; Cordiner, S.; De Maina, E.; Kumar, G.; Mele, P.; Mulone, V.; Igliński, B.;Piechota, G., Sustainable valorization of bioplastic waste: a review on effective recycling routes for the most widely used biopolymers,Int. J. Mol. Sci. 2023 ,24, 7696..
Shen, C. F.; Zhao, X.; Long, Y. W.; An, W. L.; Zhou, X. L.; Liu, X. H.; Xu, S. M.; Wang, Y. Z. Approach for the low carbon footprint of biodegradable plastic PBAT: Complete recovery of its every monomer via high-efficiency hydrolysis and separation.ACS Sustainable Chem. Eng.2023,11, 2005−2013..
.Wu, S. S.; Lu, H. J.; Li, Y. D.; Zhang, S. D.; Zeng, J. B. Unlocking the potential of poly(butylene succinate) through incorporation of vitrimeric network based on dynamic imine bonds.Chinese J. Polym. Sci.2024,42, 1414−1424..
Zhang, M. Q. Self-healing polymeric materials: on a winding road to success.Chinese J. Polym. Sci.2022,40, 1315−1316..
Liu, T.; Fei, M. E.; Zhao, B. M.; Zhang, J. W. Progress in biobased vitrimers.Acta Polymerica Sinica(in Chinese)2020,51, 817−832..
Zhou, X. W.; Huang, J.; Zhang, X. H.; Li, T.; Wang, Y.; Wang, S. B.; Xia, B. H.; Dong, W. F. Design of tough, yet strong, heat-resistant PLA/PBAT blends with reconfigurable shape memory behavior by engineering exchangeable covalent crosslinks.Chinese J. Polym. Sci.2023,41, 1868−1878..
Liu, X. H.; Xu, S. M.; Zhang, F.; Wang, X. L.; Wang, Y. Z. Chemical upcycling of polymeric materials.Acta Polymerica Sinica(in Chinese)2022,53, 1005−1022..
Liu, Y. B.; Xu, Z.; Zhang, Z. M.; Bao, R. Y.; Yang, M. B.; Yang, W. Blowing tough polylactide film enabled by thein situconstruction of covalent adaptive networks with epoxidized soybean oil as dynamic crosslinks.Green Chem.2023,25, 5182−5194..
Maaz, M.; Riba-Bremerch, A.; Guibert, C.; Van Zee, N. J.; Nicolaÿ, R. Synthesis of polyethylene vitrimers in a single step: consequences of graft structure, reactive extrusion conditions, and processing aids.Macromolecules2021,54, 2213−2225..
Röttger, M.; Domenech, T.; van der Weegen, R.; Breuillac, A.; Nicolaÿ, R.; Leibler, L. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis.Science2017,356, 62−65..
Jehanno, C.; Alty, J. W.; Roosen, M.; De Meester, S.; Dove, A. P.; Chen, E. Y. X.; Leibfarth, F. A.; Sardon, H. Critical advances and future opportunities in upcycling commodity polymers.Nature2022,603, 803−814..
Qiu, J. F.; Ma, S. Q.; Wang, S.; Tang, Z.; Li, Q.; Tian, A. P.; Xu, X. W.; Wang, B. B.; Lu, N.; Zhu, J. Upcycling of polyethylene terephthalate to continuously reprocessable vitrimers through reactive extrusion.Macromolecules2021,54, 703−712..
Kloxin, C. J.; Scott, T. F.; Adzima, B. J.; Bowman, C. N. Covalent adaptable networks (CANs): A unique paradigm in cross-linked polymers.Macromolecules2010,43, 2643−2653..
Fan, Z. Y.; Shi, Z. Z.; Ma, L.; Gong, P. J.; Bao, R. Y.; Yang, M. B.; Yang, W. Dynamic cross-linked poly(butylene adipate-co-terephthalate) for high-performance green foam.ACS Sustainable Chem. Eng.2023,11, 16354−16364..
Zheng, J. W.; Lu, J. W.; Yang, Z. X.; Liu, T. Fabrication of recyclable and biodegradable PBAT vitrimer via construction of highly dynamic cross-linked network.Polym. Degrad. Stabil.2024,219, 110602..
Wang, B. B.; Du, S.; Wang, Y.; Li, F. L.; Ding, Y.; Zhu, J.; Ma, S. Q. Efficient conversion of poly(butylene adipate-co-terephthalate) into covalent adaptable networksviaa chain breaking-crosslinking strategy.Polym. Chem.2023,14, 4057−4063..
Han, J.; Liu, T.; Hao, C.; Zhang, S.; Guo, B. H.; Zhang, J. W. A catalyst-free epoxy vitrimer system based on multifunctional hyperbranched polymer.Macromolecules2018,51, 6789−6799..
Han, J. R.; Liu, T.; Zhang, S.; Hao, C.; Xin, J. N.; Guo, B. H.; Zhang, J. W. Hyperbranched polymer assisted curing and repairing of an epoxy coating.Ind. Eng. Chem.Res.2019,58, 6466−6475..
Delahaye, M.; Winne, J. M.; Du Prez, F. E. Internal catalysis in covalent adaptable networks: Phthalate monoester transesterification as a versatile dynamic cross-linking chemistry.J. Am. Chem. Soc.2019,141, 15277−15287..
Enhanced Crystallization of Poly(butylene adipate-co-terephthalate) by a Self-assembly Nucleating Agent
Solvent-Free Synthesis of Self-Healable and Recyclable Crosslinked Polyurethane Based on Dynamic Oxime-Urethane Bonds
High-Performance Biodegradable PBAT/PPC Composite Film Through Reactive Compatibilizer
Related Author
Ya-Ming Wang
Chang-Yu Shen
Chun-Tai Liu
Meng-Fan Jing
Zi-Heng Zhang
Kun Chen
Cheng Zhou
Lei Yang
Related Institution
State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University
University of Science and Technology of China
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry CAS, Chinese Academy of Sciences
Key Laboratory of Polymer Ecomaterials, Chinese Academy of Sciences, Changchun Institute of Applied Chemistry