FOLLOWUS
a.School of Materials Science and Engineering, Tianjin University, Tianjin 300050, China
b.Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
c.Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, Tianjin University, Tianjin 300072, China
d.School of Chemical Engineering and Technology and State Key Laboratory for Chemical Engineering, Tianjin University, Tianjin 300350, China
yanji.zhu@tju.edu.cn
Published:30 November 2024,
Published Online:20 August 2024,
Received:04 April 2024,
Revised:10 May 2024,
Accepted:14 May 2024
Scan QR Code
Zhu, H. Y.; Zhu, Y. J.; Bao, D.; Pei, L. C.; Xu, F.; Wang, Z.; Wang, H. Y. Research on improving the thermal conductivity of epoxy resin with flexible assisted rigid groups. Chinese J. Polym. Sci. 2024, 42, 1845–1854
Hong-Yu Zhu, Yan-Ji Zhu, Di Bao, et al. Research on Improving the Thermal Conductivity of Epoxy Resin with Flexible Assisted Rigid Groups. [J]. Chinese Journal of Polymer Science, 2024,42(11):1845-1854.
Zhu, H. Y.; Zhu, Y. J.; Bao, D.; Pei, L. C.; Xu, F.; Wang, Z.; Wang, H. Y. Research on improving the thermal conductivity of epoxy resin with flexible assisted rigid groups. Chinese J. Polym. Sci. 2024, 42, 1845–1854 DOI: 10.1007/s10118-024-3163-z.
Hong-Yu Zhu, Yan-Ji Zhu, Di Bao, et al. Research on Improving the Thermal Conductivity of Epoxy Resin with Flexible Assisted Rigid Groups. [J]. Chinese Journal of Polymer Science, 2024,42(11):1845-1854. DOI: 10.1007/s10118-024-3163-z.
The thermal conductivity of the material is improved by introducing rigid mesocrystalline motifs into the epoxy resin through prepared small molecule liquid crystals (SMLCs) assisted by flexible chains of appropriate length.
Epoxy resins are cross-linked polymeric materials with typically low thermal conductivity. Currently
the introduction of rigid groups into epoxy resins is the main method to improve their intrinsic thermal conductivity. The researchers explored the relationship between the flexible chains of epoxy monomers and the thermal conductivity of the modified epoxy resins (MEP). The effect of flexible chain length on the introduction of rigid groups into the cross-linked structure of epoxy is worth investigating
which is of great significance for the improvement of thermal conductivity of polymers and related theories. We prepared a small molecule liquid crystal (SMLC) containing a long flexible chain
via
a simple synthesis reaction
and introduced rigid mesocrystalline units into the epoxy resin
via
a curin
g reaction. During high-temperature curing
the introduced mesocrystalline units underwent orientational stacking and were immobilized within the polymer. XRD and TGA tests showed that the ordering within the modified epoxy resin was increased
which improved the thermal conductivity of the epoxy resin. Crucially
during the above process
the flexible chains of SMLC provide space for the biphenyl groups to align and therefore affect the thermal conductivity of the MEP. Specifically
the MEP-VI cured with SMLC-VI containing six carbon atoms in the flexible chain has the highest thermal conductivity of 0.40 W·m
−1
·K
−1
which is 125% of the thermal conductivity of SMLC-IV of 0.32 W·m
−1
·K
−1
111% of the thermal conductivity of SMLC-VIII of 0.36 W·m
−1
·K
−1
and 182% of the thermal conductivity of pure epoxy of 0.22 W·m
−1
·K
−1
. The introduction of appropriate length flexible chains for SMLC promotes the stacking of rigid groups within the resin while reducing the occurrence of chain folding. This study will provide new ideas for the enhancement of thermal conductivity of cross-linked polymeric materials.
Epoxy ResinPolymerThermal conductivityRigid groupFlexible chain
Zhang, F.; Feng, Y.; Feng, W. Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms.Mat. Sci. Eng.: R2020,142, 100580..
Tao, P.; Shang, W.; Song, C.; Shen, Q.; Zhang, F.; Luo, Z.; Yi, N.; Zhang, D.; Deng, T. Bioinspired engineering of thermal materials.Adv. Mater.2015,27, 428−463..
Lin, Y.; Kang, Q.; Liu, Y.; Zhu, Y.; Jiang, P.; Mai, Y. W.; Huang, X. Flexible, highly thermally conductive and electrically insulating phase change materials for advanced thermal management of 5G base stations and thermoelectric generators.Nano-Micro Lett.2023,15, 31..
Zhu, Z.; Li, C.; Songfeng, E.; Xie, L.; Geng, R.; Lin, C. T.; Li, L.; Yao, Y. Enhanced thermal conductivity of polyurethane compositesviaengineering small/large sizes interconnected boron nitride nanosheets.Compos. Sci. Technol.2019,170, 93−100..
Yang, X.; Liang, C.; Ma, T.; Guo, Y.; Kong, J.; Gu, J.;Chen, M.; Zhu, J. A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods.Adv. Compos. Hybrid. Mater.2018,1, 207−230..
Xu, F.; Ye, P.; Peng, J.; Geng, H.; Cui, Y.; Bao, D.; Lu, R.; Zhu, H.; Zhu, Y.; Wang, H. Cerium methacrylate assisted preparation of highly thermally conductive and anticorrosive multifunctional coatings for heat conduction metals protection.Nano-Micro Lett.2023,15, 201..
Zhu, Y.; Shen, X.; Bao, D.; Shi, Y.; Huang, H.; Zhao, D.; Wang, H. Nano SiCenhancement in the BN micro structure for high thermal conductivity epoxy composite.J. Polym. Res.2021,28, 1−10..
Cui, Y.; Xu, F.; Bao, D.; Gao, Y.; Peng, J.; Lin, D.; Geng, H.; Shen, X.; Zhu, Y.; Wang, H. Construction of 3D interconnected boron nitride/carbon nanofiber hybrid network within polymer composite for thermal conductivity improvement.J. Mater. Sci. Technol.2023,147, 165−175..
Gao, Y.; Zhang, M.; Chen, X.; Zhu, Y.; Wang, H.;Yuan, S.; Xu, F.; Cui, Y.; Bao, D.; Shen, X.; Sun, Y.; Peng, J.; Zhou, Y.; Zhang, M. A high-performance thermal conductive and outstanding electrical insulating composite based on robust neuron-like microstructure.Chem. Eng. J.2021,426, 131280..
Wang, Z.; Wu, Z.; Weng, L.; Ge, S.; Jiang, D.; Huang, M.; Mulvihill, D. M.; Chen, Q.; Guo, Z.; Jazzar, A. A roadmap review of thermally conductive polymer composites: critical factors, progress, and prospects.Adv. Funct. Mater.2023,33, 2301549..
Xu, F.; Cui, Y.; Bao, D.; Lin, D.; Yuan, S.; Wang, X.; Wang, H.; Sun, Y. A 3D interconnected Cu network supported by carbon felt skeleton for highly thermally conductive epoxy composites.Chem. Eng. J.2020,388, 124287..
Han, J.; Du, G.; Gao, W.; Bai, H. An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network.Adv. Funct. Mater.2019,29, 1900412..
Tian, K.; Yang, S.; Niu, J.; Wang, H. Enhanced thermal conductivity and mechanical toughness of the epoxy resin by incorporation of mesogens without nanofillers.IEEE Access2021,9, 31575−31580..
Song, S. H.; Katagi, H.; Takezawa, Y. Study on high thermal conductivity of mesogenic epoxy resin with spherulite structure.Polymer2012,53, 4489−4492..
Shiota, A.; Ober, C. K. Synthesis and curing of novel LC twin epoxy monomers for liquid crystal thermosets.J. Polym. Sci., Part A: Polym. Chem.1996,34, 1291−1303..
Huang, C.; Qian, X.; Yang, R. Thermal conductivity of polymers and polymer nanocomposites.Mater. Sci. Eng.: R2018,132, 1−22..
Xu, F.; Bao, D.; Cui, Y.; Gao, Y.; Lin, D.; Wang, X.; Peng, J.; Geng, H.; Wang, H. Copper nanoparticle-deposited graphite sheets for highly thermally conductive polymer composites with reduced interfacial thermal resistance.Adv. Compos. Hybrid. Mater. 2021, 1-12..
He, Y. M.; Wang, Q. Q.; Liu, W.; Liu, Y. S. Functionalization of boron nitride nanoparticles and their utilization in epoxy composites with enhanced thermal conductivity.Phys. Status Solidi A.2014,211, 677−684..
Saleem, A.; Zhang, Y.; Gong, H.; Majeed, M. K. Fluoride doped SiC/Si3N4composite as a high thermal conductive material with enhanced mechanical properties.Ceram. Int.2019,45, 21004−21010..
Leng, Y.; Xu, M.; Sun, Y.; Li, B. Simultaneously improving the thermal conductive and flame retardant performance for epoxy resins thermosets by constructing core-shell-brush structure and distributing of MWCNTs in brush intervals.Polym. Adv. Technol.2020,31, 589−601..
Xu, F.; Zhang, M.; Cui, Y.; Bao, D.; Peng, J.; Gao, Y.; Lin, D.; Geng, H.; Zhu, Y.; Wang, H. A novel polymer composite coating with high thermal conductivity and unique anti-corrosion performance.Chem. Eng. J.2022,439, 135660..
Ma, H.; Gao, B.; Wang, M.; Yuan, Z.; Shen, J.; Zhao, J.; Feng, Y. Strategies for enhancing thermal conductivity of polymer-based thermal interface materials: a review.J. Mater. Sci.2021,56, 1064−1086..
Kumar, A.; Sharma, K.; Dixit, A. R. A review on the mechanical properties of polymer composites reinforced by carbon nanotubes and graphene.Carbon Lett.2021,31, 149−165..
Dang, J.; Zhang, J.; Li, M.; Dang, L.; Gu, J. Enhancing intrinsic thermal conductivities of epoxy resins by introducing biphenyl mesogen-containing liquid crystalline co-curing agents.Polym. Chem.2022,13, 6046−6053..
Ruan, K.; Zhong, X.; Shi, X.; Dang, J.; Gu, J. Liquid crystal epoxy resins with high intrinsic thermal conductivities and their composites: a mini-review.Mater. Today Phys.2021,20, 100456..
Giang, T.; Kim, J. Thermal conductivity of diglycidylester-terminated liquid crystalline epoxy/alumina composite.Mol. Cryst. Liq. Cryst.2016,629, 12−26..
Giang, T.; Kim, J. Effect of liquid-crystalline epoxy backbone structure on thermal conductivity of epoxy-alumina composites.J. Electron. Mater.2017,46, 627−636..
Chen, G.; Zhang, Q.; Hu, Z.; Wang, S.; Wu, K.; Shi, J.; Liang, L.; Lu, M. Liquid crystalline epoxies bearing biphenyl ether and aromatic ester mesogenic units: synthesis and thermal properties.J. Macromol. Sci. A2019,56, 484−495..
Harada, M.; Morioka, D.; Ochi, M. Thermal and mechanical properties of tetra-functional mesogenic type epoxy resin cured with aromatic amine.J. Appl. Polym. Sci.2018,135, 46181..
Liu, Y.; Chen, J.; Zhang, Y.; Gao, S.; Lu, Z.; Xue, Q. Highly thermal conductive benzoxazine-epoxy interpenetrating polymer networks containing liquid crystalline structures.J. Polym. Sci., Part B: Polym. Phys.2017,55, 1813−1821..
Li, C.; Li, Y.; Gong, C.; Ruan, K.; Zhong, X.; Pan, P.; Liu, C.; Gu, J.; Shi, X. High thermal conductivity of liquid crystalline monomer-poly(vinyl alcohol) dispersion films containing microscopic-ordered structure.J. Appl. Polym. Sci.2021,138, 49791..
Maire, J.; Anufriev, R.; Yanagisawa, R.; Ramiere, A.; Volz, S.; Nomura, M. Heat conduction tuning by wave nature of phonons.Sci. Adv.2017,3, e1700027..
Yang, X.; Zhu, J.; Yang, D.; Zhang, J.; Guo, Y.; Zhong, X.; Kong, J.; Gu, J. High-efficiency improvement of thermal conductivities for epoxy composites from synthesized liquid crystal epoxy followed by doping BN fillers.Compos. Part B-Eng.2020,185, 107784..
Zhang, Q.; Chen, G.; Wu, K.; Shi, J.; Liang, L.; Lu, M. Biphenyl liquid crystal epoxy containing flexible chain: synthesis and thermal properties.J. Appl. Polym. Sci.2020,137, 49143..
Islam, A. M.; Lim, H.; You, N. H.; Ahn, S.; Goh, M.; Hahn, J. R.; Yeo, H.; Jang, S. G. Enhanced thermal conductivity of liquid crystalline epoxy resin using controlled linear polymerization.ACS Macro Lett.2018,7, 1180−1185..
Bao, D.; Yuan, S.; Xu, F.; Cui, Y.; Zhu, Y.; Shen, X.; Lin, D.; Lu, R.; Zhu, H.; Wang, H.; Wang, R. A novel polymer composites with high thermal conductivity by Zn2+interfacial intensification and 3D network construction.Compos. Commun.2023,44, 101764..
Wang, H. M.; Zhang, Y. C.; Zhu, L. R.; Zhang, B. L.; Zhang, Y. Y. Curing behavior and kinetics of epoxy resins cured with liquid crystalline curing agent.J. Therm. Anal. Calorim.2012,107, 1205−1211..
Akatsuka, M.; Takezawa, Y. Study of high thermal conductive epoxy resins containing controlled high-order structures.J. Appl. Polym. Sci.2003,89, 2464−2467..
Guo, H.; Lu, M.; Liang, L.; Wu, K.; Ma, D.; Xue, W. Liquid crystalline epoxies with lateral substituents showing a low dielectric constant and high thermal conductivity.J. Electron. Mater.2017,46, 982−991..
Shen, X.; Gao, Y.; Sun, Y.; Bao, D.; Xu, F.; Cui, Y.; Wang, H.; Zhu, Y.; Huang, H. Improving the intrinsic thermal conductivity of epoxy resin by synergistic effect between rigid groups and hydrogen bonds.ChemistrySelect2021,6, 8219−8226..
Alhaddad, O. A.; Ahmed, H. A.; Hagar, M.; Saad, G. R.; Abu Al-Ola, K. A.; Naoum, M. M. Thermal and photophysical studies of binary mixtures of liquid crystal with different geometrical mesogens.Crystals2020,10, 223..
Lee, J. Y.; Jang, J. The effect of mesogenic length on the curing behavior and properties of liquid crystalline epoxy resins.Polymer2006,47, 3036−3042..
Gu, J.; Ruan, K. Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics.Nano-Micro Lett.2021,13, 1−9..
0
Views
31
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution