FOLLOWUS
a.State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
b.School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
yylu@ciac.ac.cn
Published:30 November 2024,
Published Online:20 August 2024,
Received:08 April 2024,
Revised:07 May 2024,
Accepted:13 May 2024
Scan QR Code
Ma, L. C.; Ruan, Y. J.; Wang, Z. H.; Lu, Y. Y.; An, L. J. Exploring nonlinear rheological behaviors in entangled semi-flexible polymer melts. Chinese J. Polym. Sci. 2024, 42, 1811–1823
Li-Cheng Ma, Yong-Jin Ruan, Zhen-Hua Wang, et al. Exploring Nonlinear Rheological Behaviors in Entangled Semi-flexible Polymer Melts. [J]. Chinese Journal of Polymer Science, 2024,42(11):1811-1823.
Ma, L. C.; Ruan, Y. J.; Wang, Z. H.; Lu, Y. Y.; An, L. J. Exploring nonlinear rheological behaviors in entangled semi-flexible polymer melts. Chinese J. Polym. Sci. 2024, 42, 1811–1823 DOI: 10.1007/s10118-024-3162-0.
Li-Cheng Ma, Yong-Jin Ruan, Zhen-Hua Wang, et al. Exploring Nonlinear Rheological Behaviors in Entangled Semi-flexible Polymer Melts. [J]. Chinese Journal of Polymer Science, 2024,42(11):1811-1823. DOI: 10.1007/s10118-024-3162-0.
Using molecular dynamics simulation
we investigate the nonlinear rheological behavior of semi-flexible entangled polymer melts. Our findings show a notable stress overshoot phenomenon at specific shear rates
along with the observation of rare metastable states
indicated by a dual-plateau pattern in the shear stress-strain curve.
This study utilizes molecular dynamics simulation to investigate the complex dynamics of entangled semi-flexible polymer melts. The investigation reveals a significant stress overshoot phenomenon in the systems
demonstrating the intricate interplay between shear rates
chain orientation
and chain stretching dynamics. Additionally
the identification of metastable states
characterized by
a dual-plateau phenomenon in the shear stress-strain curve at specific Rouse-Weissenberg number
Wi
R
showcases the system’s responsiveness to external perturbations and its transition to stable shear banding states. Moreover
the analysis of flow field deviations uncovers a progression of shear bands with increasing
Wi
R
displaying distinct behaviors in the system’s dynamics under different shear rates and chain lengths. These findings challenge established theoretical frameworks and advocate for refined modelling approaches in polymer rheology research.
Semi-flexible polymer meltsMolecular dynamics simulationStress overshootShear bandingEntanglement
Winkler, R. G. Semiflexible polymers in shear flow.Phys. Rev. Lett.2006,97, 128301..
Winkler, R. G. Conformational and rheological properties of semiflexible polymers in shear flow.J. Chem. Phys.2010,133, 164905..
Nikoubashman, A.; Howard, M. P. Equilibrium dynamics and shear rheology of semiflexible polymers in solution.Macromolecules2017,50, 8279−8289..
Syed, S.; MacKintosh, F. C.; Shivers, J. L. Structural features and nonlinear rheology of self-assembled networks of cross-linked semiflexible polymers.J. Phys. Chem. B2022,126, 10741−10749..
Hamley, I. W. Liquid crystal phase formation by biopolymers.Soft Matter2010,6, 1863−1871..
Mezzenga, R.; Seddon, J. M.; Drummond, C. J.; Boyd, B. J.; Schröder-Turk, G. E.; Sagalowicz, L. Nature-inspired design and application of lipidic lyotropic liquid crystals.Adv. Mater.2019,31, 1900818..
Wong, J.; Toader, V.; Reven, L. Lyotropic nematic phases of isotropic nanoparticlesviasemiflexible polymer ligands.Macromol. Rapid Commun.2023,44, 2200951..
Auhl, R.; Everaers, R.; Grest, G. S.; Kremer, K.; Plimpton, S. J. Equilibration of long chain polymer melts in computer simulations.J. Chem. Phys.2003,119, 12718−12728..
Nikoubashman, A.; Milchev, A.; Binder, K. Dynamics of single semiflexible polymers in dilute solution.J. Chem. Phys.2016,145, 234903..
Xu, X.; Chen, J. Structural mechanism for viscosity of semiflexible polymer melts in shear flow.ACS Macro Lett.2017,6, 331−336..
Nikoubashman, A. Ordering, phase behavior, and correlations of semiflexible polymers in confinement.J. Chem. Phys.2021,154, 090901..
Bobbili, S. V.; Milner, S. T. Simulation study of entanglement in semiflexible polymer melts and solutions.Macromolecules2020,53, 3861−3872..
Wang, S.-Q.Nonlinear polymer rheology: macroscopic phenomenology and molecular foundation. John Wiley and Sons: Hoboken, 2018 ..
Boukany, P. E.; Wang, S.-Q.; Wang, X. Universal scaling behavior in startup shear of entangled linear polymer melts.J. Rheol.2009,53, 617−629..
Ravindranath, S.; Wang, S.-Q. Universal scaling characteristics of stress overshoot in startup shear of entangled polymer solutions.J. Rheol.2008,52, 681−695..
Münstedt, H. Various features of melt strain hardening of polymeric materials in uniaxial extension and their relation to molecular structure: review of experimental results and their interpretation.Rheol. Acta2023,62, 333−363..
Gürgen, S.; Kuşhan, M. C.; Li, W. Shear thickening fluids in protective applications: a review.Prog. Polym. Sci.2017,75, 48−72..
Maxwell, B. The application of melt elasticity measurements to polymer processing.Polym. Eng. Sci. 1986 ,26, 1405−1409..
Doi, M.; Edwards, S. F. The theory of polymer dynamics.Oxford University Press: New York1986..
Graham, R. S.; Likhtman, A. E.; McLeish, T. C. B.; Milner, S. T. Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release.J. Rheol. 2003, 47, 1171−1200..
Doi, M. Explanation for the 3.4-power law for viscosity of polymeric liquids on the basis of the tube model.J. Polym. Sci., Polym. Phys. Ed.1983,21, 667−684..
Milner, S. T.; McLeish, T. C. B. Reptation and contour-length fluctuations in melts of linear polymers.Phys. Rev. Lett.1998,81, 725−728..
Viovy, J. L.; Rubinstein, M.; Colby, R. H. Constraint release in polymer melts: tube reorganization versus tube dilation.Macromolecules1991,24, 3587−3596..
Rubinstein, M.; Colby, R. H. Self-consistent theory of polydisperse entangled polymers: linear viscoelasticity of binary blends.J. Chem. Phys.1988,89, 5291−5306..
Ianniruberto, G.; Marrucci, G. On compatibility of the Cox-Merz rule with the model of Doi and Edwards.J. Non-Newtonian Fluid Mech.1996,65, 241−246..
Marrucci, G. Dynamics of entanglements: A nonlinear model consistent with the Cox-Merz rule.J. Non-Newtonian Fluid Mech.1996,62, 279−289..
Schweizer, K. S.; Xie, S. J. Physics of the stress overshoot and chain stretch dynamics of entangled polymer liquids under continuous startup nonlinear shear.ACS Macro Lett.2018,7, 218−222..
Xie, S. J.; Schweizer, K. S. Consequences of delayed chain retraction on the rheology and stretch dynamics of entangled polymer liquids under continuous nonlinear shear deformation.Macromolecules2018,51, 4185−4200..
Becerra, D.; Córdoba, A.; Schieber, J. D. Examination of nonuniversalities in entangled polymer melts during the start-up of steady shear flow.Macromolecules2021,54, 8033−8042..
Wang, Z.; Lam, C. N.; Chen, W. R.; Wang, W.; Liu, J.; Liu, Y.; Porcar, L.; Stanley, C. B.; Zhao, Z.; Hong, K.; Wang, Y. Fingerprinting molecular relaxation in deformed polymers.Phys. Rev. X2017,7, 031003..
Xu, W. S.; Carrillo, J. M. Y.; Lam, C. N.; Sumpter, B. G.; Wang, Y. Molecular dynamics investigation of the relaxation mechanism of entangled polymers after a large step deformation.ACS Macro Lett.2018,7, 190−195..
Hsu, H. P.; Kremer, K. Chain retraction in highly entangled stretched polymer melts.Phys. Rev. Lett.2018,121, 167801..
Anwar, M.; Graham, R. S. Nonlinear shear of entangled polymers from nonequilibrium molecular dynamics.J. Polym. Sci., Part B: Polym. Phys.2019,57, 1692−1704..
Ruan, Y.; Lu, Y.; An, L.; Wang, Z.-G. Shear banding in entangled polymers: stress plateau, banding location, and lever rule.ACS Macro Lett.2021,10, 1517−1523..
Hatzikiriakos, S. G. Wall slip of molten polymers.Prog. Polym. Sci.2012,37, 624−643..
Ruan, Y.; Lu, Y.; An, L.; Wang, Z.-G. Nonlinear rheological behaviors in polymer melts after step shear.Macromolecules2019,52, 4103−4110..
McLeish, T. C. B.; Ball, R. C. A molecular approach to the spurt effect in polymer melt flow.J. Polym. Sci., Part B: Polym. Phys.1986,24, 1735−1745..
Spenley, N. A.; Cates, M. E.; McLeish, T. C. B. Nonlinear rheology of wormlike micelles.Phys. Rev. Lett.1993,71, 939−942..
Cates, M. E. Nonlinear viscoelasticity of wormlike micelles (and other reversibly breakable polymers).J. Phys. Chem.1990,94, 371−375..
Yerushalmi, J.; Katz, S.; Shinnar, R. The stability of steady shear flows of some viscoelastic fluids.Chem. Eng. Sci.1970,25, 1891−1902..
Britton, M. M.; Callaghan, P. T. Two-phase shear band structures at uniform stress.Phys. Rev. Lett.1997,78, 4930−4933..
Berret, J. F.; Roux, D. C.; Porte, G.; Lindner, P. Shear-induced isotropic-to-nematic phase transition in equilibrium polymers.Europhys. Lett.1994,25, 521..
Grand, C.; Arrault, J.; Cates, M. E. Slow transients and metastability in wormlike micelle rheology.J. Phys. II France1997,7, 1071−1086..
Berret, J. F.; Porte, G. Metastable versus unstable transients at the onset of a shear-induced phase transition.Phys. Rev. E1999,60, 4268−4271..
Li, Y.; Hu, M.; McKenna, G. B.; Dimitriou, C. J.; McKinley, G. H.; Mick, R. M.; Venerus, D. C.; Archer, L. A. Flow field visualization of entangled polybutadiene solutions under nonlinear viscoelastic flow conditions.J. Rheol.2013,57, 1411−1428..
Hemingway, E. J.; Fielding, S. M. Edge-induced shear banding in entangled polymeric fluids.Phys. Rev. Lett.2018,120, 138002..
Wang, S.-Q.; Liu, G.; Cheng, S.; Boukany, P. E.; Wang, Y.; Li, X. Letter to the editor: sufficiently entangled polymers do show shear strain localization at high enough Weissenberg numbers.J. Rheol.2014,58, 1059−1069..
Li, Y.; Hu, M.; McKenna, G. B.; Dimitriou, C. J.; McKinley, G. H.; Mick, R. M.; Venerus, D. C.; Archer, L. A. Response to: sufficiently entangled polymers do show shear strain localization at high enough Weissenberg numbers.J. Rheol.2014,58, 1071−1082..
Wang, S.-Q.; Ravindranath, S.; Wang, Y.; Boukany, P. New theoretical considerations in polymer rheology: elastic breakdown of chain entanglement network.J. Chem. Phys. 2007 ,127..
Fielding, S. M.; Olmsted, P. D. Kinetics of the shear banding instability in startup flows.Phys. Rev. E2003,68, 036313..
Fielding, S. M.; Olmsted, P. D. Early stage kinetics in a unified model of shear-induced demixing and mechanical shear banding instabilities.Phys. Rev. Lett.2003,90, 224501..
Fielding, S. M.; Olmsted, P. D. Flow phase diagrams for concentration-coupled shear banding.Eur. Phys. J. E2003,11, 65−83..
Ruan, Y.; Lu, Y.; An, L.; Wang, Z.-G. Multiple entanglements between two chains in polymer melts: an analysis of primitive paths based on Frenet trihedron.Macromolecules2024,57, 2792−2800..
Auhl, D.; Ramirez, J.; Likhtman, A. E.; Chambon, P.; Fernyhough, C. Linear and nonlinear shear flow behavior of monodisperse polyisoprene melts with a large range of molecular weights.J. Rheol.2008,52, 801−835..
Boukany, P. E.; Wang, S.-Q. Use of particle-tracking velocimetry and flow birefringence to study nonlinear flow behavior of entangled wormlike micellar solution: from wall slip, bulk disentanglement to chain scission.Macromolecules2008,41, 1455−1464..
Costanzo, S.; Huang, Q.; Ianniruberto, G.; Marrucci, G.; Hassager, O.; Vlassopoulos, D. Shear and extensional rheology of polystyrene melts and solutions with the same number of entanglements.Macromolecules2016,49, 3925−3935..
Kremer, K.; Grest, G. S. Dynamics of entangled linear polymer melts: a molecular-dynamics simulation.J. Chem. Phys.1990,92, 5057−5086..
Tretyakov, N.; Müller, M.; Todorova, D.; Thiele, U. Parameter passing between molecular dynamics and continuum models for droplets on solid substrates: the static case.J. Chem. Phys. 2013 ,138, 064905..
Parisi, D.; Costanzo, S.; Jeong, Y.; Ahn, J.; Chang, T.; Vlassopoulos, D.; Halverson, J. D.; Kremer, K.; Ge, T.; Rubinstein, M.; Grest, G. S.; Srinin, W.; Grosberg, A. Y. Nonlinear shear rheology of entangled polymer rings.Macromolecules2021,54, 2811−2827..
Todd, B. D.; Daivis, P. J. Homogeneous non-equilibrium molecular dynamics simulations of viscous flow: techniques and applications.Mol. Simul.2007,33, 189−229..
Thompson, A. P.; Aktulga, H. M.; Berger, R.; Bolintineanu, D. S.; Brown, W. M.; Crozier, P. S.; in 't Veld, P. J.; Kohlmeyer, A.; Moore, S. G.; Nguyen, T. D.; Shan, R.; Stevens, M. J.; Tranchida, J.; Trott, C.; Plimpton, S. J. LAMMPS--a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales.Comput. Phys. Commun. 2022 ,271, 108171..
Sen, S.; Kumar, S. K.; Keblinski, P. Viscoelastic properties of polymer melts from equilibrium molecular dynamics simulations.Macromolecules2005,38, 650−653..
Ramírez, J.; Sukumaran, S. K.; Vorselaars, B.; Likhtman, A. E. Efficient on the fly calculation of time correlation functions in computer simulations.J. Chem. Phys. 2010 ,133, 154103..
Hsu, H. P.; Kremer, K. Static and dynamic properties of large polymer melts in equilibrium.J. Chem. Phys. 2016 ,144, 154907..
Likhtman, A. E.; McLeish, T. C. B. Quantitative theory for linear dynamics of linear entangled polymers.Macromolecules2002,35, 6332−6343..
Schweizer, T.; van Meerveld, J.; Öttinger, H. C. Nonlinear shear rheology of polystyrene melt with narrow molecular weight distribution—experiment and theory.J. Rheol.2004,48, 1345−1363..
Jeong, S.; Kim, J. M.; Baig, C. Molecular characteristics of stress overshoot for polymer melts under start-up shear flow.J. Chem. Phys.2017,147, 234901..
Jeong, S.; Kim, J. M.; Baig, C. Effect of chain orientation and stretch on the stress overshoot of entangled polymeric materials under start-up shear.Macromolecules2017,50, 3424−3429..
Pearson, D.; Herbolzheimer, E.; Grizzuti, N.; Marrucci, G. Transient behavior of entangled polymers at high shear rates.J. Polym. Sci., Part B: Polym. Phys.1991,29, 1589−1597..
Pearson, D. S.; Kiss, A. D.; Fetters, L. J.; Doi, M. Flow-induced birefringence of concentrated polyisoprene solutions.J. Rheol. 1989 ,33, 517−535..
Kröger, M.; Dietz, J. D.; Hoy, R. S.; Luap, C. The Z1+ package: shortest multiple disconnected path for the analysis of entanglements in macromolecular systems.Comput. Phys. Commun.2023,283, 108567..
Boukany, P. E.; Hu, Y. T.; Wang, S.-Q. Observations of wall slip and shear banding in an entangled DNA solution.Macromolecules2008,41, 2644−2650..
Boukany, P. E.; Wang, S.-Q. Shear banding or not in entangled DNA solutions.Macromolecules2010,43, 6950−6952..
Alshareedah, I.; Moosa, M. M.; Pham, M.; Potoyan, D. A.; Banerjee, P. R. Programmable viscoelasticity in protein-RNA condensates with disordered sticker-spacer polypeptides.Nat. Commun.2021,12, 6620..
0
Views
95
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution