

FOLLOWUS
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
wuzhen@ustb.edu.cn (Z.W.)
guojie.wang@mater.ustb.edu.cn (G.J.W.)
Published:30 November 2024,
Published Online:08 August 2024,
Received:08 April 2024,
Revised:05 May 2024,
Accepted:08 May 2024
Scan QR Code
Xiao, L. P.; Qiu, L. M.; Wu, Z.; Wang, G. J. Nature-inspired pH-responsive hydrogels with rapid and high contrast changes in color, fluorescence, and shape simultaneously. Chinese J. Polym. Sci. 2024, 42, 1758–1767
Le-Ping Xiao, Lv-Ming Qiu, Zhen Wu, et al. Nature-Inspired pH-Responsive Hydrogels with Rapid and High Contrast Changes in Color, Fluorescence, and Shape Simultaneously. [J]. Chinese Journal of Polymer Science, 2024,42(11):1758-1767.
Xiao, L. P.; Qiu, L. M.; Wu, Z.; Wang, G. J. Nature-inspired pH-responsive hydrogels with rapid and high contrast changes in color, fluorescence, and shape simultaneously. Chinese J. Polym. Sci. 2024, 42, 1758–1767 DOI: 10.1007/s10118-024-3158-9.
Le-Ping Xiao, Lv-Ming Qiu, Zhen Wu, et al. Nature-Inspired pH-Responsive Hydrogels with Rapid and High Contrast Changes in Color, Fluorescence, and Shape Simultaneously. [J]. Chinese Journal of Polymer Science, 2024,42(11):1758-1767. DOI: 10.1007/s10118-024-3158-9.
An intelligent pH-responsive hydrogel with remarkably rapid and high contrast changes is reported. Under stimuli
its color varies from yellow to red within 120 s. Moreover
the fluorescent intensity changes by 50% within 30 s and the shape shrinks significantly. Furthermore
the hydrogel has been successfully applied in the fields of biomimicry
camouflage
and multistage information encryption.
To realize single-stimulus-induced simultaneous multi-behaviors in hydrogels is still quite challenging nowadays. Herein
an intelligent pH-responsive hydrogel (BP4VA/PAS) with rapid and high contrast changes in color
fluorescence
and shape simultaneously is reported. The BP4VA/PAS hydrogel is fabricated by incorporating styryl anthracene derivative (BP4VA) into copolymer networks (PAS) of acrylamide and sodium 4-styrene sulfonate. Under acid conditions
the protonation of BP4VA generates a rapid change with high color contrast from yellow to red and a fluorescence switch between bright green and weak red emission. At the sa
me time
the electrostatic interactions between 2H-BP4VA
2+
and sulfonate anions suspended on PAS trigger BP4VA/PAS hydrogels to shrink. Upon alkaline treatment
the 2H-BP4VA
2+
/PAS hydrogel deprotonates and recovers to its original color
fluorescence
and shape. Furthermore
utilizing rapid and remarkable pH-responsive properties of BP4VA/PAS hydrogels
we successfully demonstrated its applications in biomimicry
camouflage
and multistage information encryption. Collectively
this work provided an elegant strategy to develop intelligent hydrogels in applications of biomimetic smart materials and information encryption.
pH-responseFluorescenceHydrogelsBioinspired functionInformation encryption
Wang, R.; Zhang, Y.; Lu, W.; Wu, B.; Wei, S.; Wu, S.; Wang, W.; Chen, T. Bio-inspired structure-editing fluorescent hydrogel actuators for environment-interactive information encryption.Angew. Chem. Int. Ed.2023,62, e202300417..
Wu, S.; Shi, H.; Lu, W.; Wei, S.; Shang, H.; Liu, H.; Si, M.; Le, X.; Yin, G.; Theato, P.; Chen, T. Aggregation-induced emissive carbon dots gels for octopus-inspired shape/color synergistically adjustable actuators.Angew. Chem. Int. Ed.2021,60, 21890−21898..
Reiter, S.; Hülsdunk, P.; Woo, T.; Lauterbach, M. A.; Eberle, J. S.; Akay, L. A.; Longo, A.; Meier, C. J.; Kretschmer, F.; Langer, J. D.; Kaschube, M.; Laurent, G. Elucidating the control and development of skin patterning in cuttlefish.Nature2018,562, 361−366..
Wang, L.; Urbas, A. M.; Li, Q. Nature-inspired emerging chiral liquid crystal nanostructures: from molecular self-assembly to DNA mesophase and nanocolloids.Adv. Mater.2018,32, 1801335..
Huang, Y.; Bisoyi, H. K.; Huang, S.; Wang, M.; Chen, X. M.; Liu, Z.; Yang, H.; Li, Q. Bioinspired synergistic photochromic luminescence and programmable liquid crystal actuators.Angew. Chem. Int. Ed.2021,60, 11247−11251..
Wang, M.; Chu, D.; Liu, L.; Huang, S.; Chen, X. M.; Liu, Z. Y.; Yang, H. Intelligent surfaces thermally switchable between the highly rough and entirely smooth states.Chinese J. Polym. Sci.2021,39, 1609−1616..
Zuo, X. L.; Wang, S. F.; Le, X. X.; Lu, W.; Chen, T. Self-healing polymeric hydrogels: toward multifunctional soft smart materials.Chinese J. Polym. Sci.2021,39, 1262−1280..
Li, L.; Scheiger, J. M.; Levkin, P. A. Design and applications of photoresponsive hydrogels.Adv. Mater.2019,31, 1807333..
Zhang, J.; He, B.; Hu, Y.; Alam, P.; Zhang, H.; Lam, J. W. Y.; Tang, B. Z. Stimuli-responsive AIEgens.Adv. Mater.2021,33, 2008071..
Neumann, M.; Marco, G.; Iudin, D.; Viola, M.; Nostrum, C. F.; Ravensteijn, B. G. P.; Vermonden, T. Stimuli-responsive hydrogels: the dynamic smart biomaterials of tomorrow.Macromolecules2023,56, 8377−8392..
Shi, H.; Yang, Y.; Huang, Y.; Li, X.; Shi, Y. Anisotropic single-domain hydrogel with stimulus response to temperature and ionic strength.Macromolecules2023,56, 528−534..
Wang, Z. L.; Huang, D.; Zhang, M. Y.; Fu, X.-X.; Luo, Y.; Zou, L.; Gao, S. J.; Zhao, Z.; Wang, Y. F.; Zhang, Y.; Zhang, Y. J. Responsive hybrid poly(vinyl alcohol) hydrogel membranes with embedded microgels as valves.Chinese J. Polym. Sci.2023,41, 1646−1655..
Guo, D.; Le, X.; Shang, H.; Shan, F.; Li, D.; Ouyang, C.; Chen, T. Excitation-wavelength-dependent fluorescent organohydrogel for dynamic information anti-counterfeiting.Chinese Chem. Lett.2023,34, 108347..
Wu, B.; Si, M.; Hua, L.; Zhang, D.; Li, W.; Zhao, C.; Lu, W.; Chen, T. Cephalopod-inspired chemical-gated hydrogel actuation systems for information 3D-encoding display.Adv. Mater.2024,n/a, 2401659..
Cai, X.; Xie, N.; Li, Y.; Lam, J. W. Y.; Liu, J.; He, W.; Wang, J.; Tang, B. Z. A smart AIEgen-functionalized surface with reversible modulation of fluorescence and wettability.Mater. Horiz.2019,6, 2032−2039..
Luo, W.; Wu, B.; Xu, X.; Han, X.; Hu, J.; Wang, G. A triple pH-responsive AIEgen: synthesis, optical properties and applications.Chem. Eng. J.2022,431, 133717..
Luo, W.; Xu, X.; Tang, Y.; Wu, Z.; Wang, G. Multiregulated color and fluorescence of a cyanostilbene-based AIEgen by light and pH.Sci. China Mater.2023,66, 1180−1188..
Shi, H. H.; Wu, S. S.; Wang, R. J.; Zhang, Y.; An, S. H.; Lu, W.; Chen, T. Double-layer hydrogels with tunable mechanofluorochromic response for smart display.Chinese J. Polym. Sci.2023,41, 547−555..
Li, Z.; Xia, B.; Lin, T.; Gao, M.; Zhao, C.; Wu, X.; Lin, C.; Wu, S. Hybrid encoding strategy of multi-stimulus response aggregation-induced emission hydrogels for advanced information encryption and safety.ACS Appl. Polym. Mater.2024,6, 1422−1428..
Lu, D.; Lian, Q.; Zhu, M. Bioinspired Multistimuli-induced synergistic changes in color and shape of hydrogel and actuator based on fluorescent microgels.Adv. Sci.2024,11, 2304776..
Xu, M.; Hua, L.; Gong, L.; Lu, J.; Wang, J.; Zhao, C. Lighted up by hydrogen-bonding: luminescence behavior and applications of AIEgen-doped interpenetrating network hydrogel.Sci. China Chem.2021,64, 1770−1777..
Su, G.; Li, Z.; Gong, J.; Zhang, R.; Dai, R.; Deng, Y.; Tang, B. Z. Information-storage expansion enabled by a resilient aggregation-induced-emission-active nanocomposite hydrogel.Adv. Mater.2022,34, 2207212..
Le, X.; Shang, H.; Wu, S.; Zhang, J.; Liu, M.; Zheng, Y.; Chen, T. Heterogeneous fluorescent organohydrogel enables dynamic anti-counterfeiting.Adv. Funct. Mater.2021,31, 2108365..
Wang, Q.; Qi, Z.; Wang, Q. M.; Chen, M.; Lin, B.; Qu, D. H. A time-dependent fluorescent hydrogel for “time-lock” information encryption.Adv. Funct. Mater.2022,32, 2208865..
Li, Z.; Liu, P.; Ji, X.; Gong, J.; Hu, Y.; Wu, W.; Wang, X.; Peng, H. Q.; Kwok, R. T. K.; Lam, J. W. Y.; Lu, J.; Tang, B. Z. Bioinspired simultaneous changes in fluorescence color, brightness, and shape of hydrogels enabled by AIEgens.Adv. Mater.2020,32, 1906493..
Yang, C.; Xiao, H.; Tang, L.; Luo, Z.; Luo, Y.; Zhou, N.; Liang, E.; Wang, G.; Tang, J. A 3D multistage information encryption platform with self-erasure function based on a synergistically shape-deformable and AIE fluorescence-tunable hydrogel.Mater. Horiz.2023,10, 2496−2505..
Dong, Y. J.; Zhang, J. B.; Tan, X.; Wang, L. J.; Chen, J. L.; Li, B.; Ye, L.; Xu, B.; Zou, B.; Tian, W. J. Multi-stimuli responsive fluorescence switching: the reversible piezochromism and protonation effect of a divinylanthracene derivative.J. Mater. Chem. C2013,1, 7554−7559..
Wu, D. E.; Wang, M. N.; Luo, Y. H.; Zhang, Y. W.; Ma, Y. H.; Sun, B. W. Tuning the structures and photophysical properties of 9,10-distyrylanthrance (DSA)viafluorine substitution.New J. Chem.2017,41, 4220−4233..
Zhang, J.; Ma, S.; Fang, H.; Xu, B.; Sun, H.; Chan, I.; Tian, W. Insights into the origin of aggregation enhanced emission of 9,10-distyrylanthracene derivatives.Mater. Chem. Front.2017,1, 1422−1429..
Dong, Y.; Xu, B.; Zhang, J.; Lu, H.; Wen, S.; Chen, F.; He, J.; Li, B.; Ye, L.; Tian, W. Supramolecular interactions induced fluorescent organic nanowires with high quantum yield based on 9,10-distyrylanthracene.Crystengcomm2012,14, 6593−6598..
Dong, Y.; Xu, B.; Zhang, J.; Tan, X.; Wang, L.; Chen, J.; Lv, H.; Wen, S.; Li, B.; Ye, L.; Zou, B.; Tian, W. Piezochromic luminescence based on the molecular aggregation of9,10-bis((E)-2-(pyrid-2-yl)vinyl)anthracene.Angew. Chem. Int. Ed.2012,51, 10782−10785..
Zhang, J.; Chen, J.; Xu, B.; Wang, L.; Ma, S.; Dong, Y.; Li, B.; Ye, L.; Tian, W. Remarkable fluorescence change based on the protonation-deprotonation control in organic crystals.Chem. Commun.2013,49, 3878−3880..
Chen, J.; Law, C. C. W.; Lam, J. W. Y.; Dong, Y.; Lo, S. M. F.; Williams, I. D.; Zhu, D.; Tang, B. Z. Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-substituted 2,3,4,5-tetraphenylsiloles.Chem. Mater.2003,15, 1535−1546..
Lefebvre, C.; Rubez, G.; Khartabil, H.; Boisson, J. C.; Contreras-García, J.; Hénon, E. Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density.Phys. Chem. Chem. Phys.2017,19, 17928−17936..
Zhang, J.; Lu, T. Efficient evaluation of electrostatic potential with computerized optimized code.Phys. Chem. Chem. Phys.2021,23, 20323−20328..
Lu, T.; Chen, F. Multiwfn: a multifunctional wavefunction analyzer.J. Comput. Chem.2012,33, 580−592..
Wu, Z.; Xiao, L.; Xu, R.; Zhong, S.; Gong, M.; Wang, G. UV-light-induced morphological transformation of spiropyran assemblies from irregular sheet-like structures to nanospheres.Langmuir2023,39, 13946−13952..
Li, C.; Liu, J.; Qiu, X.; Yang, X.; Huang, X.; Zhang, X. Photoswitchable and reversible fluorescent eutectogels for conformal information encryption.Angew. Chem. Int. Ed.2023,62, e202313971..
Zheng, Y.; Huang, H.; Yu, J.; Hu, Z.; Wang, Y. Highly stretchable and strong poly(vinyl alcohol)-based hydrogel for reprogrammable actuator applications.Chem. Eng. J.2023,454, 140054..
Zheng, Y.; Huang, H.;Wang, Y.; Zhu, J.; Yu, J.; Hu, Z. Poly (vinyl alcohol) based gradient cross-linked and reprogrammable humidity-responsive actuators.Sens. Actuators B2021,349, 130735..
0
Views
56
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621