FOLLOWUS
Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
xiaofanji@hust.edu.cn
Published:01 October 2024,
Published Online:26 June 2024,
Received:16 April 2024,
Revised:26 April 2024,
Accepted:28 April 2024
Scan QR Code
Liu, H.; Hu, R.; Hu, Z. Q.; Ji, X. F. The new methods for characterization of molecular weight of supramolecular polymers. Chinese J. Polym. Sci. 2024, 42, 1403–1413
Hui Liu, Rui Hu, Zi-Qing Hu, et al. The New Methods for Characterization of Molecular Weight of Supramolecular Polymers. [J]. Chinese Journal of Polymer Science 42(10):1403-1413(2024)
Liu, H.; Hu, R.; Hu, Z. Q.; Ji, X. F. The new methods for characterization of molecular weight of supramolecular polymers. Chinese J. Polym. Sci. 2024, 42, 1403–1413 DOI: 10.1007/s10118-024-3153-1.
Hui Liu, Rui Hu, Zi-Qing Hu, et al. The New Methods for Characterization of Molecular Weight of Supramolecular Polymers. [J]. Chinese Journal of Polymer Science 42(10):1403-1413(2024) DOI: 10.1007/s10118-024-3153-1.
Molecular weight is one of important parameters of supramolecular polymers
which affects the physical/chemical properties and processing applications of materials. In this review
we summarize three strategies for characterizing the molecular weight of supramolecular polymers that recently reported by our research group according to the characteristics of supramolecular polymers.
Supramolecular polymers
as a type of dynamic polymers
are subordinate to the interdisciplinary field of polymer chemistry and supramolecular chemistry
whose development has greatly promoted the prosperity of new materials. Notably
molecular weight is one of the most important parameters of supramolecular polymers
which affects the physical/chemical properties and processing applications of materials. Developing new methods for characterizing the molecular weight of supramolecular polymers is crucial for advancing the development of supramolecular polymers. In this review
we elaborate and summarize three strategies for characterizing the molecular weight of supramolecular polymers that recently reported by our research group according to the characteristics of supramolecular polymers
including (1) the molecular weight distinction corresponding to variable fluorescence colors
(2) matching different molecular weights with different fluorescence lifetime
(3) transforming supramolecular polymers into mechanically interlocked polymers or covalent polymers. Besides
we also discuss the limitations of current methods for characterizing supramolecular polymers. We hope that this review can promote the development of supramolecular polymers and significantly inspire to exploit new methods to characterizing molecular weight of supramolecular polymers.
Supramolecular polymersMolecular weightSelf-assemblyMechanically interlocked polymersDynamic polymers
Aida, T.; Meijer, E. W.; Stupp, S. I. Functional supramolecular polymers.Science2012,335, 813−817..
de Greef, T. F. A.; Meijer, E. W. Supramolecular polymers.Nature2008,453, 171−173..
Bosman, A. W.; Sijbesma, R. P.; Meijer, E. W. Supramolecular polymers at work.Mater. Today2004,7, 34−39..
Brunsveld, L.; Folmer, B. J. B.; Meijer, E. W.; Sijbesma, R. P. Supramolecular polymers.Chem. Rev.2001,101, 4071−4098..
Qin, B.; Yin, Z.; Tang, X.; Zhang, S.; Wu, Y.; Xu, J. F.; Zhang, X. Supramolecular polymer chemistry: from structural control to functional assembly.Prog. Polym. Sci.2020,100, 101167..
Zhao, J.; Zhang, Z.; Wang, C.; Yan, X. Synergistic dual dynamic bonds in covalent adaptable networks.CCS Chem.2023,6, 41−56..
Fuentes, E.; Gerth, M.; Berrocal, J. A.; Matera, C.; Gorostiza, P.; Voets, I. K.; Pujals, S.; Albertazzi, L. An azobenzene-based single-component supramolecular polymer responsive to multiple stimuli in water.J. Am. Chem. Soc.2020,142, 10069−10078..
Venkata Rao, K.; Miyajima, D.; Nihonyanagi, A.; Aida, T. Thermally bisignate supramolecular polymerization.Nat. Chem.2017,9, 1133−1139..
Wu, S.; Cai, C.; Li, F.; Tan, Z.; Dong, S. Deep eutectic supramolecular polymers: bulk supramolecular materials.Angew. Chem. Int. Ed.2020,59, 11871−11875..
Yan, X.; Wang, F.; Zheng, B.; Huang, F. Stimuli-responsive supramolecular polymeric materials.Chem. Soc. Rev.2012,41, 6042−6065..
Zhang, Z.; Zhao, Z.; Wu, L.; Lu, S.; Ling, S.; Li, G.; Xu, L.; Ma, L.; Hou, Y.; Wang, X.; Li, X.; He, G.; Wang, K.; Zou, B.; Zhang, M. Emissive platinum(II) cages with reverse fluorescence resonance energy transfer for multiple sensing.J. Am. Chem. Soc.2020,142, 2592−2600..
Fouquey, C.; Lehn, J. M.; Levelut, A. M. Molecular recognition directed self-assembly of supramolecular liquid crystalline polymers from complementary chiral components.Adv. Mater.1990,2, 254−257..
Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J. B.; Hirschberg, J. H. K. K.; Lange, R. F. M.; Lowe, J. K. L.; Meijer, E. W. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding.Science1997,278, 1601−1604..
Han, W.; Xiang, W.; Li, Q.; Zhang, H.; Yang, Y.; Shi, J.; Ji, Y.; Wang, S.; Ji, X.; Khashab, N. M.; Sessler, J. L. Water compatible supramolecular polymers: recent progress.Chem. Soc. Rev.2021,50, 10025−10043..
Hua, B.; Shao, L.; Li, M.; Liang, H.; Huang, F. Macrocycle-based solid-state supramolecular polymers.Acc. Chem. Res.2022,55, 1025−1034..
Li, H.; Yang, Y.; Xu, F.; Liang, T.; Wen, H.; Tian, W. Pillararene-based supramolecular polymers.Chem. Commun.2019,55, 271−285..
Peng, H. Q.; Zhu, W.; Guo, W. J.; Li, Q.; Ma, S.; Bucher, C.; Liu, B.; Ji, X.; Huang, F.; Sessler, J. L. Supramolecular polymers: recent advances based on the types of underlying interactions.Prog. Polym. Sci.2023,137, 101635..
Clemons, T. D.; Stupp, S. I. Design of materials with supramolecular polymers.Prog. Polym. Sci.2020,111, 101310..
Li, Y.; Li, S.; Sun, J. Degradable poly(vinyl alcohol)-based supramolecular plastics with high mechanical strength in a watery environment.Adv. Mater.2021,33, 2007371..
Peng, W.; Zhang, G.; Zhao, Q.; Xie, T. Autonomous off-equilibrium morphing pathways of a supramolecularshape-memory polymer.Adv. Mater.2021,33, 2102473..
Wang, J.; You, W.; Chen, L.; Xiao, D.; Xiao, X.; Shan, T.; Liu, Y.; Liu, M.; Li, G.; Yu, W.; Huang, F. Adaptive and robust vitrimers fabricated by synergy of traditional and supramolecular polymers.Angew. Chem. Int. Ed. 2024 , DOI: 10.1002/anie.202405761..
Abd El-Kader, K. A. M.; Abdel Hamied, S. F.; Mansour, A. B.; El-Lawindy, A. M. Y.; El-Tantaway, F. Effect of the molecular weights on the optical and mechanical properties of poly(vinyl alcohol) films.Polym. Test.2002,21, 847−850..
Berber, M. R.; Nakashima, N. Tailoring different molecular weight phenylene-polybenzimidazole membranes with remarkable oxidative stability and conductive properties for high-temperature polymer electrolyte fuel cells.ACS Appl. Mater. Interfaces2019,11, 46269−46277..
Yang, K. K.; Wang, X. L.; Wang, Y. Z.; Huang, H. X. Effects of molecular weights of poly(p-dioxanone) on its thermal, rheological and mechanical properties andin vitrodegradability.Mater. Chem. Phys.2004,87, 218−221..
Zhang, W.; Cao, J.; Jiang, W. Analysis of film-forming properties of chitosan with different molecular weights and its adhesion properties with different postharvest fruit surfaces.Food Chem.2022,395, 133605..
Sun, P.; Qin, B.; Xu, J. F.; Zhang, X. Supramonomers for controllable supramolecular polymerization and renewable supramolecular polymeric materials.Prog. Polym. Sci.2022,124, 101486..
Weyandt, E.; Leanza, L.;Capelli, R.; Pavan, G. M.; Vantomme, G.; Meijer, E. W. Controlling the length of porphyrin supramolecular polymersviacoupled equilibria and dilution-induced supramolecular polymerization.Nat. Commun.2022,13, 248..
Dong, S.; Luo, Y.; Yan, X.; Zheng, B.; Ding, X.; Yu, Y.; Ma, Z.; Zhao, Q.; Huang, F. A dual-responsive supramolecular polymer gel formed by crown ether based molecular recognition.Angew. Chem. Int. Ed.2011,50, 1905−1909..
Zhang, M.; Yin, S.; Zhang, J.; Zhou, Z.; Saha, M. L.; Lu, C.; Stang, P. J. Metallacycle-cored supramolecular assemblies with tunable fluorescence including white-light emission.Proc. Natl. Acad. Sci.2017,114, 3044−3049..
Yu, G.; Zhao, X.; Zhou, J.; Mao, Z.; Huang, X.; Wang, Z.; Hua, B.; Liu, Y.; Zhang, F.; He, Z.; Jacobson, O.; Gao, C.; Wang, W.; Yu, C.; Zhu, X.; Huang, F.; Chen, X. Supramolecular polymer-based nanomedicine: high therapeutic performance and negligible long-term immunotoxicity.J. Am. Chem. Soc.2018,140, 8005−8019..
Zhao, W.; Tropp, J.; Qiao, B.; Pink, M.; Azoulay, J. D.; Flood, A. H. Tunable adhesion from stoichiometry-controlled and sequence-defined supramolecular polymers emerges hierarchically from cyanostar-stabilized anion-anion linkages.J. Am. Chem. Soc.2020,142, 2579−2591..
Liu, Y.; Wang, Z.; Zhang, X. Characterization of supramolecular polymers.Chem. Soc. Rev.2012,41, 5922−5932..
Winter, A.; Schubert, U. S. Synthesis and characterization of metallo-supramolecular polymers.Chem. Soc. Rev.2016,45, 5311−5357..
Yang, L.; Tan, X.; Wang, Z.; Zhang, X. Supramolecular polymers: historical development, preparation, characterization, and functions.Chem. Rev.2015,115, 7196−7239..
Martin, R. B. Comparisons of indefinite self-association models.Chem. Rev.1996,96, 3043−3064..
Abed, S.; Boileau, S.; Bouteiller, L. Supramolecular association of acid terminated polydimethylsiloxanes. 3. Viscosimetric study.Polymer2001,42, 8613−8619..
Gibson, H. W.; Yamaguchi, N.; Jones, J. W. Supramolecular pseudorotaxane polymers from complementary pairs of homoditopic molecules.J. Am. Chem. Soc.2003,125, 3522−3533..
Hasegawa, Y.; Miyauchi, M.; Takashima, Y.; Yamaguchi, H.; Harada, A. Supramolecular polymers formed fromβ-cyclodextrins dimer linked by poly(ethylene glycol) and guest dimers.Macromolecules2005,38, 3724−3730..
Miyauchi, M.; Takashima, Y.; Yamaguchi, H.; Harada, A. Chiral supramolecular polymers formed by host-guest interactions.J. Am. Chem. Soc.2005,127, 2984−2989..
Liu, Y.; Yu, Y.; Gao, J.; Wang, Z.; Zhang, X. Water-soluble supramolecular polymerization driven by multiple host-stabilized charge-transfer interactions.Angew. Chem. Int. Ed.2010,49, 6576−6579..
Chen, S.-G.; Yu, Y.; Zhao, X.; Ma, Y.; Jiang, X. K.; Li, Z. T. Highly stable chiral (A)6-B supramolecular copolymers: a multivalency-based self-assembly process.J. Am. Chem. Soc.2011,133, 11124−11127..
Haino, T.; Watanabe, A.; Hirao, T.; Ikeda, T. Supramolecular polymerization triggered by molecular recognition between bisporphyrin and trinitrofluorenone.Angew. Chem. Int. Ed.2012,51, 1473−1476..
Huang, Z.; Yang, L.; Liu, Y.; Wang, Z.; Scherman, O. A.; Zhang, X. Supramolecular Polymerization Promoted and Controlled through Self-Sorting.Angew. Chem. Int. Ed.2014,53, 5351−5355..
Xu, J.; Zhang, X. Study on supramolecular polymers in china: an overview and outlook.Acta Polymerica Sinica(in Chinese)2017, 37−49..
Dai, D.; Yang, J.; Yang, Y. W. Supramolecular assemblies with aggregation-induced emission properties for sensing and detection.Chem. Eur. J.2022,28, e202103185..
Guo, W. J.; Peng, T.; Zhu, W.; Ma, S.; Wang, G.; Li, Y.; Liu, B.; Peng, H. Q. Visualization of supramolecular assembly by aggregation-induced emission.Aggregate2023,4, e297..
Wang, J.; Li, D.; Ye, Y.; Qiu, Y.; Liu, J.; Huang, L.; Liang, B.; Chen, B. A fluorescent metal-organic framework for food real-time visual monitoring.Adv. Mater.2021,33, 2008020..
Li, Y.; Huang, W.; Yong, J.; Huang, S.; Li, Y.; Liu, Y.; Wu, D. Aggregation-induced ratiometric emission and mechanochromic luminescence in a pyrene-benzohydrazonate conjugate.New J. Chem.2018,42, 12644−12648..
Wang, J.; Wang, N.; Wu, G.; Wang, S.; Li, X. Multicolor emission from non-conjugated polymers based on a single switchable boron chromophore.Angew. Chem. Int. Ed.2019,58, 3082−3086..
Wang, J.; Yan, R.; Hu, Y.; Du, G.; Liao, G.; Yang, H.; Luo, Y.; Zheng, X.; Chen, Y.; Wang, S.; Li, X. Density-dependent emission colors from a conformation-switching chromophore in polyurethanes.Angew. Chem. Int. Ed.2022,61, e202112290..
Wang, Q.; Lin, B.; Chen, M.; Zhao, C.; Tian, H.; Qu, D. H. A dynamic assembly-induced emissive system for advanced information encryption with time-dependent security.Nat. Commun.2022,13, 4185..
Liu, H.; Hu, Z.; Zhang, H.; Li, Q.; Lou, K.; Ji, X. A strategy based on aggregation-induced ratiometric emission to differentiate molecular weight of supramolecular polymers.Angew. Chem. Int. Ed.2022,61, e202203505..
Li, Q.; Zhang, H.; Lou, K.; Yang, Y.; Ji, X.; Zhu, J.; Sessler, J. L. Visualizing molecular weights differences in supramolecular polymers.Proc. Natl. Acad. Sci.2022,119, e2121746119..
Liu, H.; Hu, Z.; Xu, S.; Li, J.; Li, Q.; Ji, X.; Tang, B. Z. Multicolor aggregation-induced emission covalent polymers as the reference standard to read the molecular weight of supramolecular polymers.Macromolecules2024,57, 719−726..
Steinmark, I. E.; Chung, P.-H.; Ziolek, R. M.; Cornell, B.; Smith, P.; Levitt, J. A.; Tregidgo, C.; Molteni, C.; Yahioglu, G.; Lorenz, C. D.; Suhling, K. Time-resolved fluorescence anisotropy of a molecular rotor resolves microscopic viscosity parameters in complex environments.Small2020,16, 1907139..
Eivgi, O.; Blum, S. A. Real-time polymer viscosity-catalytic activity relationships on the microscale.J. Am. Chem. Soc.2022,144, 13574−13585..
Garcia, A. I. V.; Blum, S. A. Polymer molecular weight determinationviafluorescence lifetime.J. Am. Chem. Soc.2022,144, 22416−22420..
Liu, H.; Hu, Z.; Li, Q.; Ji, X. Fluorescence lifetime-based characterization for supramolecular polymer molecular weight.Macromolecules2023,56, 8003−8010..
Bai, R.; Zhang, Z.; Di, W.; Yang, X.; Zhao, J.; Ouyang, H.; Liu, G.; Zhang, X.; Cheng, L.; Cao, Y.; Yu, W.; Yan, X. Oligo[2]catenane that is robust at both the microscopic and macroscopic scales.J. Am. Chem. Soc.2023,145, 9011−9020..
Gu, Y.; Kou, X.; Wang, X.; Li, Z. Creating remarkably moisture- and air-stable macromolecular lewis acid by integrating borane within the polymer chain: a highly active catalyst for homo(co)polymerization of epoxides.Angew. Chem. Int. Ed.2024,63, e202318645..
Uliyanchenko, E. Size-exclusion chromatography—from high-performance to ultra-performance.Anal. Bioanal. Chem.2014,406, 6087−6094..
Zhao, D.; Li, Z.; Shen, Y.; Li, Z. Crystalline stereoregular poly(ether-ester)viaMeAl[Salen]-catalyzed well-controlled ring-opening polymerization of enantiopure cyclic ether-ester monomer.Macromolecules2023,56, 6019−6026..
Huang, F.; Nagvekar, D. S.; Zhou, X.; Gibson, H. W. Formation of a linear supramolecular polymerby self-assembly of two homoditopic monomers based on the bis(m-phenylene)-32-crown-10/paraquat recognition motif.Macromolecules2007,40, 3561−3567..
Hart, L. F.; Hertzog, J. E.; Rauscher, P. M.; Rawe, B. W.; Tranquilli, M. M.; Rowan, S. J. Material properties and applications of mechanically interlocked polymers.Nat. Rev. Mater.2021,6, 508−530..
Clark, P. G.; Day, M. W.; Grubbs, R. H. Switching and extension of a [c2]Daisy-chain dimer polymer.J Am. Chem. Soc.2009,131, 13631−13633..
Wang, P.; Gao, Z.; Yuan, M.; Zhu, J.; Wang, F. Mechanically linked poly[2]rotaxanes constructed from the benzo-21-crown-7/secondary ammonium salt recognition motif.Polym. Chem.2016,7, 3664−3668..
Chen, L.; Sheng, X.; Li, G.; Huang, F. Mechanically interlocked polymers based on rotaxanes.Chem. Soc. Rev.2022,51, 7046−7065..
Liu, G.; Rauscher, P. M.; Rawe, B. W.; Tranquilli, M. M.; Rowan, S. J. Polycatenanes: synthesis, characterization, and physical understanding.Chem. Soc. Rev.2022,51, 4928−4948..
Belowich, M. E.; Stoddart, J. F. Dynamic imine chemistry.Chem. Soc. Rev.2012,41, 2003−2024..
Chen, Y.; Tang, H.; Chen, H.; Li, H. Self-assemblyviacondensation of imine or itsn-substituted derivatives.Acc. Chem. Res.2023,56, 2838−2850..
Liu, H.; Hu, Z.; Ji, X. Characterization by gel permeation chromatography of the molecular weight of supramolecular polymers generated by forming polyrotaxanes through the introduction of external stoppers.Chem. Eur. J.2024,30, e202400099..
Li, J.; Hu, Z.; Xu, S.; Quan, X.; Ji, X. Self-assembled poly[2]catenanes based on non-covalent and dynamic covalent bonds.Polym. Chem. 2024 , DOI: 10.1039/d4py00075g..
Chen, J.; Cao, W. Fabrication of a covalently attached self-assembly multilayer filmviaH-bonding attraction and subsequent UV-irradiation.Chem. Commun.1999, 1711−1712..
Liu, H.; Hu, R.; Hu, Z.; Ji, X. Construction of supramolecular polymers and covalent polymersviathe same monomers.Chem. Eur. J. 2024 , DOI: 10.1002/chem.202400394..
0
Views
121
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution