
FOLLOWUS
a.Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
b.Shandong Institute of Nonmetallic Materials, Jinan 250031, China
c.Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710072, China
gyqnpu@163.com
Published:01 July 2024,
Published Online:23 February 2024,
Received:30 November 2023,
Revised:09 January 2023,
Accepted:19 January 2024
Scan for full text
Wang, S. S.; Feng, D. Y.; Zhang, Z. M.; Liu, X.; Ruan, K. P.; Guo, Y. Q.; Gu, J. W. Highly thermally conductive polydimethylsiloxane composites with controllable 3D GO@f-CNTs networks via self-sacrificing template method. Chinese J. Polym. Sci. 2024, 42, 897–906
Shuang-Shuang Wang, Dian-Ying Feng, Zhi-Ming Zhang, et al. Highly Thermally Conductive Polydimethylsiloxane Composites with Controllable 3D GO@
Wang, S. S.; Feng, D. Y.; Zhang, Z. M.; Liu, X.; Ruan, K. P.; Guo, Y. Q.; Gu, J. W. Highly thermally conductive polydimethylsiloxane composites with controllable 3D GO@f-CNTs networks via self-sacrificing template method. Chinese J. Polym. Sci. 2024, 42, 897–906 DOI: 10.1007/s10118-024-3098-4.
Shuang-Shuang Wang, Dian-Ying Feng, Zhi-Ming Zhang, et al. Highly Thermally Conductive Polydimethylsiloxane Composites with Controllable 3D GO@
Hetero-structured GO@f-CNTs fillers prepared via chemical grafting method are constructed into controllable 3D GO@f-CNTs thermal conduction networks via self-sacrificing template method based on oxalic acid. When the size of oxalic acid is 0.24 mm and the volume fraction of GO@f-CNTs is 60 vol%
GO@f-CNTs/PDMS composites have optimal thermal conductivity (4.00 W/(m·K)).
Constructing controllable thermal conduction networks is the key to efficiently improve thermal conductivities of polymer composites. In this work
graphite oxide (GO) and functionalized carbon nanotubes (
f
-CNTs) are combined to prepare “Line-Plane”-like hetero-structured thermally conductive GO@
f
-CNTs fillers
which are then performed to construct controllable 3D GO@
f
-CNTs thermal conduction networks
via
self-sacrificing template method based on oxalic acid. Subsequently
thermally conductive GO@
f
-CNTs/polydimethylsiloxane (PDMS) composites are fabricated
via
casting method. When the size of oxalic acid is 0.24 mm and the volume fraction of GO@
f
-CNTs is 60 vol%
GO@
f
-CNTs/PDMS composites present the optimal thermal conductivity coefficient (
λ
4.00 W·m
−1
·K
−1
)
about 20 times that of the
λ
of neat PDMS (0.20 W·m
−1
·K
−1
)
also much higher than the
λ
(2.44 W·m
−1
·K
−1
) of GO/
f
-CNTs/PDMS composites with the same amount of randomly dispersed fillers. Meanwhile
the obtained GO@
f
-CNTs/PDMS composites have excellent thermal stability
whose
λ
deviation is only about 3% after 500 thermal cycles (20−200 °C).
PolydimethylsiloxaneHetero-structured thermally conductive fillersSelf-sacrificing templateThermal conduction networks
Jing, L.; Cheng, R.; Tasoglu, M.; Wang, Z. X.; Wang, Q. X.; Zhai, H.; Shen, S. High thermal conductivity of sandwich-structured flexible thermal interface materials.Small2023,19, 2207015..
Du, J.; Chen, A. B.; Hou, S. L.; Guan, J. CNT modified by mesoporous carbon anchored by Ni nanoparticles for CO2electrochemical reduction.Carbon Energy2022,4, 1274−1284..
Feng, L.; Wei, P.; Song, Q.; Zhang, J. X.; Fu, Q. G.; Jia, X. H.; Yang, J.; Shao, D.; Li, Y.; Wang, S. Z.; Qiang, X. F.; Song, H. J. Superelastic, highly conductive, superhydrophobic, and powerful electromagnetic shielding hybrid aerogels built from orthogonal graphene and boron nitride nanoribbons.ACS Nano2022,16, 17049−17061..
Ruan, K. P.; Shi, X. T.; Zhang, Y. L.; Guo, Y. Q.; Zhong, X.; Gu, J. W. Electric-field-induced alignment of functionalized carbon nanotubes inside thermally conductive liquid crystalline polyimide composite films.Angew. Chem. Int. Ed.2023,62, e202309010..
Yu, H. T.; Chen, C.; Sun, J. X.; Zhang, H.; Feng, Y. Y.; Qin, M. M.; Feng, W. Highly thermally conductive polymer/graphene composites with rapid room-temperature self-healing capacity.Nano-Micro Lett.2022,14, 135..
Li, Y. L.; Zou, T.; Zhao, J.; Zhang, T.; Deng, P. Y.; Liu, W. W.; Zhang, X. G.; Xie, C. J. High-enthalpy aramid nanofiber aerogel-based composite phase change materials with enhanced thermal conductivity.Compos. Commun.2023,40, 101614..
Song, W.; Li, M. X.; Wang, C.; Lu, X. F. Electronic modulation and interface engineering of electrospun nanomaterials-based electrocatalysts toward water splitting.Carbon Energy2021,3, 101−128..
Yan, Y. Y.; Wu, B.; Qian, G.; Lan, H. Y.; Alam, M. M.; Xia, R.; Qian, J. S. Ultra-wideband electromagnetic interference shielding effectiveness composite with elevated thermal conductivity.Compos. Pt. A-Appl. Sci. Manuf.2023,167, 107430..
Wu, N.; Che, S.; Shen, P. D.; Chen, N.; Chen, F. J.; Ma, G.; Liu, H. C.; Yang, W.; Wang, X. B.; Li, Y. F. A binder-free ice template method for vertically aligned 3D boron nitride polymer composites towards thermal management.J. Colloid Interface Sci.2023,647, 43−51..
Guo, Y. Q.;Ruan, K. P.; Wang, G. S.; Gu, J. W. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption.Sci. Bull.2023,68, 1195−1212..
Zhang, X. D.; Zhang, Z. T.; Wang, H. Z.; Cao, B. Y. Thermal interface materials with high thermal conductivity and low Young's modulus using a solid-liquid metal codoping strategy.ACS Appl. Mater. Interfaces2023,15, 3534−3542..
Hao, N. V.; Tung, D. H.; Thao, T. T.; Hoa, V.X.; Thoan, N. H.; Tan, P. T.; Minh, P. N.; Fal, J.; Zyla, G.; Trinh, P. V. High thermal conductivity of green nanofluid containing Ag nanoparticles prepared by using solution plasma process with Paramignya trimera extract.J. Therm. Anal. Calorim.2023,148, 7579−7590..
Liu, H. Q.; Ahmad, S.; Shi, Y. J.; Zhao, Y. A parametric study of a hybrid battery thermal management system that couples PCM/copper foam composite with helical liquid channel cooling.Energy2021,231, 120869..
Beggas, A.; Kabeel, A. E.; Abdelgaied, M.; Attia, M. E. H.; Abdulla, A. S.; Abdel-Aziz, M. M. Improving the freshwater productivity of hemispherical solar distillers using waste aluminum as store materials.J. Energy Storage2023,60, 106692..
Zhang, R. H.; Shi, X. T.; Tang, L.; Liu, Z.; Zhang, J. L.; Guo, Y. Q.; Gu, J. W. Thermally conductive and insulating epoxy composites by synchronously incorporating Si-sol functionalized glass fibers and boron nitride fillers.Chinese J. Polym. Sci.2020,38, 730−739..
Yang, L.; Xu, W.; Shi, X. L.; Wu, M. L.; Yan, Z. Y.; Zheng, Q.; Feng, G. N.; Zhang, L.; Shao, R. Investigating the thermal conductivity and flame-retardant properties of BN/MoS2/PCNF composite film containing low BN and MoS2nanosheets loading.Carbohydr. Polym.2023,311, 120621..
Li, G. Q.; Li, B.; Ren, B.; Li, Y.; Chen, H. Y.; Chen, J. H. High-thermal-conductivity AlN ceramics prepared from octyltrichlorosilane-modified AlN powder.Processes2023,11, 1186..
Zhong, Z. X.; Zhang, B.; Ye, J.; Gao, Y.; Liu, Q.;Zhang, Z. G.; Ye, F. The thermal, electrical and mechanical properties of porousα-SiC ceramics bonded with Ti3SiC2andβ-SiCvialow temperature in-situ reaction sintering.Ceram. Int.2022,48, 15189−15199..
Chen, X.; Cheng, P.; Tang, Z. D.; Xu, X. L.; Gao, H. Y.; Wang, G. Carbon-based composite phase change materials for thermal energy storage, transfer, and conversion.Adv. Sci.2021,8, 2001274..
Zhou, G.; Yao, L.; Xie, Z. X.; Kamran, U.; Xie, J. W.; Zhang, F.; Park, S. J.; Zhang, Y. H. Controllable construction of CNT-interconnected liquid metal networks for thermal management.Compos. Pt. A-Appl. Sci. Manuf.2023,175, 107743..
Tarannum, F.; Danayat, S.; Nayal, A.; Muthaiah, R.; Annam, R. S.; Garg, J. Thermally expanded graphite polyetherimide composite with superior electrical and thermal conductivity.Mater. Chem. Phys.2023,298, 127404..
Ma, T. B.; Ma, H.; Ruan, K. P.; Shi, X. T.; Qiu, H.; Gao, S. Y.; Gu, J. W. Thermally conductive poly (lactic acid) composites with superior electromagnetic shielding performancesvia3Dprinting technology.Chinese J. Polym. Sci.2022,40, 248−255..
Zhang, H.; Zhang, X. W.; Li, D. T.; Zhuang, J.; Liu, Y.; Liu, H. C.; Wu, D. M.; Feng, J. C.; Sun, J. Y. Synergistic enhanced thermal conductivity of polydimethylsiloxane compositesviaintroducing SCF and hetero-structured GB@rGO hybrid fillers.Adv. Compos. Hybrid Mater.2022,5, 1756−1768..
Zhao, C. G.; Li, Y. F.; Liu, Y. C.; Xie, H. Q.; Yu, W. A critical review of the preparation strategies of thermally conductive and electrically insulating polymeric materials and their applications in heat dissipation of electronic devices.Adv. Compos. Hybrid Mater.2023,6, 27..
He, X. Y.; Shi, J.; Hao, Y. N.; He, M. T.; Cai, J. X.; Qin, X. H.; Wang, L. M.; Yu, J. Y. Highly stretchable, durable, and breathable thermoelectric fabrics for human body energy harvesting and sensing.Carbon Energy2022,4, 621−632..
Yu, H. T.; Feng, Y. Y.; Chen, C.; Zhang, H.; Peng, L. Q.; Qin, M. M.; Feng, W. Highly thermally conductive adhesion elastomer enhanced by vertically aligned folded graphene.Adv. Sci.2022,9, 2201331..
Zhang, D. W.; Chia, L.; Huang, Y. Effect of carboxymethyl cellulose (CMC) functionalization on dispersion, mechanical, and corrosion properties of CNT/epoxy nanocomposites.Chinese J. Polym. Sci.2023,41, 1277−1286..
Gao, M. Y.; Zhai, L.; Mo, S.; Jia, Y.; Liu, Y.; He, M. H.; Fan, L. Thermally conductive polyimide/boron nitride composite films with improved interfacial compatibility based on modified fillers by polyimide brushes.Chinese J. Polym. Sci.2023,41, 1921−1936..
Liu, Y. C.; Lu, M. P.; Wu, K.; Jiao, E. X.; Liang, L. Y.; Shi, J.; Lu, M. E. Enhanced thermal conduction of functionalized graphene nanoflake/polydimethylsiloxane compositesviathermoluminescence strategy.Compos. Sci. Technol.2021,213, 108940..
Huang, Z. Q.; Wu, W.; Drummer, D.; Liu, C.; Wang, Y.; Wang, Z. Y. Enhanced the thermal conductivity of polydimethylsiloxane via a three-dimensional hybrid boron nitride@silver nanowires thermal network filler.Polymers2021,13, 248..
Guan, S. W.; Su, Z. R.; Chen, F.; Fu, Q. Spherical hybrid filler BN@Al2O3viachemical adhesive for enhancing thermal conductivity and processability of silicon rubber.J. Appl. Polym. Sci.2021,138, e51211..
Zormati, S.; Mhiri, H.; Aloulou, F.; Sammouda, H. Synthesis and characterization of organoclay and cellulose nanofibers modified with lauric acid eutectic as new phase change material (PCM) used in buildings for thermal energy storage.J. Therm. Anal. Calorim.2023,148, 3955−3964..
Li, M. K.; Sun, Y. Y.; Feng, D. Y.; Ruan, K. P.; Liu, X.; Gu, J. W. Thermally conductive polyvinyl alcohol composite filmsviaintroducing hetero-structured MXene@silver fillers.Nano Res.2023,16, 7820−7828..
Zhao, X. L.; Liu, C. L.; He, J.; Zhang, W.; Duan, X. Y.; Liang, C. B. Graphene rubber toward high content and energy saving enabled by spray drying.Diam. Relat. Mat.2024,141, 110594..
Liu, J.; Nie, Z.; Qin, R.; Ou, A. P.; Zhang, T.; Wang, X.; Liu, X. Y. Structural optimization of polyimide foamviacomposition with hyperbranched polymer modified fluorinated carbon nanotubes.Chinese J. Polym. Sci.2023,41, 117−128..
Liang, C. B.; Zhang, W.; Liu, C. L.; He, J.; Xiang, Y.; Han, M. J.; Tong, Z. W.; Liu, Y. Q. Multifunctional phase change textiles with electromagnetic interference shielding and multiple thermal response characteristics.Chem. Eng. J.2023,471, 144500..
Ran, L. X.; Qiu, L. J.; Zhao, H.; Sun, F. R.; Chen, Z. Y.; Zhao, L. J.; Yi, L. F.; Ji, X. Y. Fabrication of MXene based sandwich-like films for excellent flexibility, electromagnetic interference shielding and thermal management.Compos. Pt. A-Appl. Sci. Manuf.2023,173, 107672..
Liu, W. C.; Chou, V. H. Y.; Behera, R. P.; Le Ferrand, H. Magnetically assisted drop-on-demand 3D printing of microstructured multimaterial composites.Nat. Commun.2022,13, 5015..
Yang, J.; Shen, X.; Yang, W.; Kim, J. K. Templating strategies for 3D-structured thermally conductive composites: recent advances and thermal energy applications.Prog. Mater. Sci.2023,133, 101054..
Zhang, X.; Wang, Y.; Xia, R.; Wu, B.; Chen, P.; Qian, J. S.; Liang, H. J. Effect of chain configuration on thermal conductivity of polyethylene—a molecular dynamic simulation study.Chinese J. Polym. Sci.2020,38, 1418−1425..
Wang, J. L.; Li, Z. D.; Chen, W. Z.; Xuan, W. P.; Li, W. B.; Li, S. F.; Ji, Y. C.; Zheng, G. Y.; Long, F. Preparation and properties of three-dimensional boron nitride submicron tube/epoxy resin composites with high thermal conductivity.Polym. Compos.2023,44, 3477−3486..
Xiao, S. K.; Hu, X. W.; Jiang, X. X.; Li, Q. L. Enhanced thermal performance of phase change materials supported by hierarchical porous carbon modified with polydopamine/nano-Ag for thermal energy storage.J. Energy Storage2022,49, 104129..
Lin, Q. H.; He, S.; Liu, Q. Q.; Yang, J. H.; Qi, X. D.; Wang, Y. Construction of a 3D interconnected boron nitride nanosheets in a PDMS matrix for high thermal conductivity and high deformability.Compos. Sci. Technol.2022,226, 109528..
Wu, Y. M.; Ye, K.; Liu, Z. D.; Wang, B.; Yan, C.; Wang, Z. W.; Lin, C. T.; Jiang, N.; Yu, J. H. Cotton candy-templated fabrication of three-dimensional ceramic pathway within polymer composite for enhanced thermal conductivity.ACS Appl. Mater. Interfaces2019,11, 44700−44707..
Chen, W. C.; Liang, X. H.; Fu, W. W.; Wang, S. F.; Gao, X. N.; Zhang, Z. G.; Fang, Y. T. Phase change composite with core-shell structure for photothermal conversion and thermal energy storage.ACS Appl. Energ. Mater.2022,5, 9109−9117..
Wang, S. S.; Feng, D. Y.; Guan, H.; Guo, Y. Q.; Liu, X.; Yan, C.; Zhang, L.; Gu, J. W. Highly efficient thermal conductivity of polydimethylsiloxane compositesviaintroducing "Line-Plane"-like hetero-structured fillers.Compos. Pt. A-Appl. Sci. Manuf.2022,157, 106911..
Xie, X.; Yang, D. Achieving high thermal conductivity and satisfactory insulating properties of elastomer composites by self-assembling BN@GO hybrids.Polymers2023,15, 523..
Zeng, Z. H.; Xu, C. K.; Ren, J. W.; Yang, Z. F.; Wu, G. N.; Wei, W. F. Significantly enhanced thermal conductivity of the aramid nanofiber composite film with GO and Ag nanoflakes for thermal management application.J. Appl. Phys.2023,133, 215301..
Park, O. K.; Owuor, P. S.; Jaques, Y. M.; Galvao, D. S.; Kim, N. H.; Lee, J. H.; Tiwary, C. S.; Ajayan, P. M. Hexagonal boron nitride-carbon nanotube hybrid network structure for enhanced thermal, mechanical and electrical properties of polyimide nanocomposites.Compos. Sci. Technol.2020,188, 107977..
Qiu, P. M.; Li, Y.; Wang, H. Q.; Li, D. Y.; Wang, S. P.; Yu, J. X. 2,3-Diaminophenazine@carbon felt with chemical graftingviaamide bonds as an electrode in lithium-ion batteries.Chem. Commun. 2022 ,58, 8982-8985..
Khan, M. I.; Akhter, T.; Siddiqi, H. M.; Lee, Y. J.; Park, H.; Hassan, M.; Park, C. H. Oligoimide-mediated graphene oxide-epoxy nanocomposites with enhanced thermal conductivity and mechanical properties.Micromachines2022,13, 1379..
Vashchuk, A.; Motrunich, S.; Lishchuk, P.; Demchenko, V.; Isaiev, M.; Iurzhenko, M. Thermal conductivity and mechanical properties of epoxy vitrimer nanocomposites reinforced with graphene oxide.Appl. Nanosci.2023,13, 4675−4683..
Li, D.; Dong, L. M.; Chen, Y.; Luo, C. C.; Zhou, J.; Liu, G. T.; Ren, H. D. Thermally conductive and antistatic properties of silicone rubber reinforced by the modified graphene oxide.Polymers2022,14, 4703..
Li, J. C.; Li, F. Z.; Zhao, X. Y.; Zhang, W. F.; Li, S. J.; Lu, Y. L.; Zhang, L. Q. Jelly-inspired construction of the three-dimensional interconnected BN network for lightweight, thermally conductive, and electrically insulating rubber composites.ACS Appl. Electron. Mater.2020,2, 1661−1669..
Gu, T.; Sun, D. X.; Xie, X.; Qi, X. D.; Yang, J. H.; Lei, Y. Z.; Wang, Y. Constructing segregated structure with multiscale stereocomplex crystallites toward synchronously enhancing the thermal conductivity and thermo-mechanical properties of the polyL-lactic acid, composites.Compos. Sci. Technol.2022,219, 109257..
Guo, Y. Q.; Ruan, K. P.; Gu, J. W. Controllable thermal conductivity in composites by constructing thermal conduction networks.Mater. Today Phys.2021,20, 100449..
Hou, H.; Dai, W.; Yan, Q. W.; Lv, L.; Alam, F. E.; Yang, M. H.; Yao, Y. G.; Zeng, X. L.; Xu, J. B.; Yu, J. H.; Jiang, N.; Lin, C. T. Graphene size-dependent modulation of graphene frameworks contributing to the superior thermal conductivity of epoxy composites.J. Mater. Chem. A2018,6, 12091−12097..
Zhang, Z. W.; Ouyang, Y. L.; Cheng, Y.; Chen, J.; Li, N. B.; Zhang, G. Size-dependent phononic thermal transport in low-dimensional nanomaterials.Phys. Rep. Rev. Sec. Phys. Lett.2020,860, 1−26..
Weng, L.; Wang, H. B.; Zhang, X. R.; Liu, L. Z.; Zhang, H. X. Improved thermal conductivities of epoxy resins containing surface functionalized BN nanosheets.Nano2018,13, 1850133..
Zhang, H. B.; Zhang, X.; Zheng, K.; Tian, X. Y. Preparation of poly glycidyl methacrylate (PGMA) chain-grafted boron nitride/epoxy composites and their thermal conductivity properties.RSC Adv.2021,11, 22343−22351..
Kim, K.; Ju, H.; Kim, J. Filler orientation of boron nitride compositeviaexternal electric field for thermal conductivity enhancement.Ceram. Int.2016,42, 8657−8663..
Zhang, J.; Qi, S. H. Preparation and properties of silicon nitride/glass fiber/epoxy composites.Polym. Compos.2014,35, 1338−1342..
Tang, Y. L.; Xiao, C.; Ding, J. W.; Hu, K.; Zheng, K.; Tian, X. Y. Synergetic enhancement of thermal conductivity in the silica-coated boron nitride (SiO2@BN)/polymethyl methacrylate (PMMA) composites.Colloid. Polym. Sci.2020,298, 385−393..
Yang, W.; Kim, J. BN@PPS core-shell structure particles and their 3D segregated architecture composites with high thermal conductivities.Ceram. Int.2022,48, 25284−25291..
Guiney, L. M.; Mansukhani, N. D.; Jakus, A. E.; Wallace, S. G.; Shah, R. N.; Hersam, M. C. Three-dimensional printing of cytocompatible, thermally conductive hexagonal boron nitride nanocomposites.Nano Lett.2018,18, 3488−3493..
Lee, B.; Liu, J. Z.; Sun, B.; Shen, C. Y.; Dai, G. C. Thermally conductive and electrically insulating EVA composite encapsulants for solar photovoltaic (PV) cell.Express Polym. Lett.2008,2, 357−363..
Wu, X.; Liu, W.; Shi, F. G.; Yang, L.; Zhang, C. Constructing three-dimensional boron nitride network for highly thermally conductive epoxy resin composites.Polym. Compos.2022,43, 1711−1717..
0
Views
64
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621