
FOLLOWUS
a.Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise 533000, China
b.Translational Medicine Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
c.Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
d.State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
yanqianghuang@ymun.edu.cn (Y.Q.H)
y.liu@ucas.ac.cn (Y.L.)
Published:1 June 2024,
Published Online:4 March 2024,
Received:18 December 2023,
Revised:10 January 2024,
Accepted:10 January 2024
Scan for full text
Huang, Y. Q.; Li, Y. F.; Liu, Y.; Shi, L. Q. Triclosan-conjugated, lipase-responsive polymeric micelles for eradication of staphylococcal biofilms. Chinese J. Polym. Sci. 2024, 42, 718–728
Yan-Qiang Huang, Yuan-Feng Li, Yong Liu, et al. Triclosan-conjugated, Lipase-responsive Polymeric Micelles for Eradication of Staphylococcal Biofilms. [J]. Chinese Journal of Polymer Science 42(6):718-728(2024)
Huang, Y. Q.; Li, Y. F.; Liu, Y.; Shi, L. Q. Triclosan-conjugated, lipase-responsive polymeric micelles for eradication of staphylococcal biofilms. Chinese J. Polym. Sci. 2024, 42, 718–728 DOI: 10.1007/s10118-024-3094-8.
Yan-Qiang Huang, Yuan-Feng Li, Yong Liu, et al. Triclosan-conjugated, Lipase-responsive Polymeric Micelles for Eradication of Staphylococcal Biofilms. [J]. Chinese Journal of Polymer Science 42(6):718-728(2024) DOI: 10.1007/s10118-024-3094-8.
In this study
we present the introduction of triclosan-conjugated
lipase-responsive polymeric micelles. These micelles are specifically designed to harness the unique properties of biofilms and function as a responsive drug delivery platform. The micelles are formed through the synthesis of an amphiphilic block polymer via ring-opening polymerization of ε-caprolactone (CL) and cyclic trimethylene carbonate (MTC-Tri) containing triclosan.
Bacterial biofilms present a significant challenge in treating drug-resistant infections
necessitating the development of innovative nanomedicines. In this study
we introduce triclosan-conjugated
lipase-responsive polymeric micelles designed to exploit biofilm properties and serve as a responsive drug delivery platform. The micelles were created using an amphiphilic block polymer synthesized
via
ring-opening polymerization of
ε
-caprolactone (CL) and triclosan-containing cyclic trimethylene carbonate (MTC-Tri). Poly(ethylene glycol) (PEG-OH) acted as the macro-initiator
resulting in micelles with a PEG shell that facilitated their penetration into bacterial biofilms. An important advantage of our micelles lies in their interaction with local bacterial lipases within biofilms. These lipases triggered rapid micelle degradation
releasing triclosan in a controlled manner. This liberated triclosan effectively eliminated bacteria embedded in the biofilms. Notably
the triclosan-conjugated micelles displayed minimal toxicity to murine fibroblasts
indicating their biocompatibility and safety. This finding emphasizes the potential application of these micelles in combatting drug resistance observed in bacterial biofilms. Our triclosan-conjugated
lipase-responsive polymeric micelles exhibit promising characteristics for addressing drug resistance in bacterial biofilms. By harnessing biofilm properties and implementing a responsive drug delivery system
we seek to provide an effective solution in the fight against drug-resistant bacteria.
Self-assemblyPolymer prodrugRing-opening polymerizationBiofilm eradicationCytotoxicity
Li, Y.; Liu, G.; Wang, X.; Hu, J.; Liu, S. Enzyme-responsive polymeric vesicles for bacterial-strain-selective delivery of antimicrobial agents.Angew. Chem. Int. Ed.2016,55, 1760−1764..
Cao, B.; Xiao, F.; Xing, D.; Hu, X. Polyprodrug antimicrobials: remarkable membrane damage and concurrent drug release to combat antibiotic resistance of methicillin-resistantStaphylococcus aureus.Small2018,14, 1802008..
Andersson, D. I.; Hughes, D.; Kubicek-Sutherland, J. Z. Mechanisms and consequences of bacterial resistance to antimicrobial peptides.Drug Resist. Updat.2016,26, 43−57..
Hu, X.; Li, Y.; Piao, Y.; Karimi, M.; Wang, Y.; Wen, F.; Li, H.; Shi, L.; Liu, Y. Two-tailed dynamic covalent amphiphile combats bacterial biofilms.Adv. Mater.2023,35, 2301623..
Li, Y.; Piao, Y. Z.; Chen, H.; Shi, K.; Dai, J.; Wang, S.; Zhou, T.; Le, A.-T.; Wang, Y.; Wu, F.; Ma, R. J.; Shi, L. Q.; Liu, Y. Dynamiccovalent nano-networks comprising antibiotics and polyphenols orchestrate bacterial drug resistance reversal and inflammation alleviation.Bioact. Mater.2023,27, 288−302..
Brooks, B. D.; Brooks, A. E. Therapeutic strategies to combat antibiotic resistance.Adv. Drug Deliv. Rev.2014,78, 14−27..
Bi, Y.; Xia, G.; Shi, C.; Wan, J.; Liu, L.; Chen, Y.; Wu, Y.; Zhang, W.; Zhou, M.; He, H.; Liu, R. H. Therapeutic strategies against bacterial biofilms.Fundam. Res.2021,1, 193−212..
Wang, T.; Cornel, E.J.; Li, C.; Du, J. Drug delivery approaches for enhanced antibiofilm therapy.J. Control. Rel.2023,353, 350−365..
Lewis, K. Persister cells, dormancy and infectious disease.Nat. Rev. Microbiol.2007,5, 48−56..
Yan, J.; Bassler, B.L. Surviving as a community: antibiotic tolerance and persistence in bacterial biofilms.Cell Host Microbe2019,26, 15−21..
Xie, J.; Zhou, M.; Qian, Y.; Cong, Z.; Chen, S.; Zhang, W.; Jiang, W.; Dai, C.; Shao, N.; Ji, Z.; Zou, J.; Xiao. X.; Liu, L.; Chen, M.; Li, J.; Liu, R. Addressing MRSA infection and antibacterial resistance with peptoid polymers.Nat. Commun.2021,12, 5898..
Pan, M.; Lu, C.; Zheng, M.; Zhou, W.; Song, F.; Chen, W.; Yao, F.; Liu, D.; Cai, J. Unnatural amino-acid-based star-shaped poly(l-ornithine)s as emerging long-term and biofilm-disrupting antimicrobial peptides to treatPseudomonas Aeruginosa-infected burn wounds.Adv. Healthc. Mater.2020,9, 2000647..
Liu, Y.; Shi, L. Q.; Su, L. Z.; van der Mei, H. C.; Jutte, P. C.; Ren, Y. J.; Busscher, H. J. Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control.Chem. Soc. Rev.2019,48, 428−446..
Makabenta, J. M. V; Nabawy, A.; Li, C. H.; Schmidt-Malan, S.; Patel, R.; Rotello, V. M. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections.Nat. Rev. Microbiol.2021,19, 23−36..
Su, L. Z.; Liu, Y.; Li, Y. F.; An, Y. L.; Shi, L. Q. Responsive polymeric nanoparticles for biofilm-infection control.Chinese J. Polym. Sci.2021,39, 1376−1391..
Kheiri, S.; Liu, X.; Thompson, M. Nanoparticles at biointerfaces: antibacterial activity and nanotoxicology.Colloids Surf. B Biointerfaces2019,184, 110550..
Sambhy, V.; MacBride, M. M.; Peterson, B. R.; Sen, A. Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials.J. Am. Chem. Soc.2006,128, 9798−9808..
Qian, Y.; Hu, X.; Wang, J.; Li, Y.; Liu, Y.; Xie, L. Polyzwitterionic micelles with antimicrobial-conjugation for eradication of drug-resistant bacterial biofilms.Colloids Surf. B Biointerfaces2023,231, 113542..
Horev, B.; Klein, M. I.; Hwang, G.; Li, Y.; Kim, D.; Koo, H.; Benoit, D. S. W. pH-activated nanoparticles for controlled topical delivery of farnesol to disrupt oral biofilm virulence.ACS Nano2015,9, 2390–2404..
Gao, Y.; Wang, J.; Chai, M.; Li, X.; Deng, Y.; Jin, Q.; Ji, J. Size and charge adaptive clustered nanoparticles targeting the biofilm microenvironment for chronic lung infection management.ACS Nano2020,14, 5686−5699..
Zhan, Y.; Hu, X.; Li, Y.; Wang, Y.; Chen, H.; Omolo, C.A.; Govender, T.; Li, H.; Huang, F.; Shi, L.; Hu, X.; Liu, Y. Antimicrobial hybrid amphiphileviadynamic covalent bonds enables bacterial biofilm dispersal and bacteria eradication.Adv. Funct. Mater.2023,33, 2214299..
Chen, L.; Peng, M.; Li, H.; Zhou, J.; He, W.; Hu, R.; Ye, F.; Li, Y.; Shi, L.; Liu, Y. Metal-phenolic network with pd nanoparticle nodes synergizes oxidase-like and photothermal properties to eradicate oral polymicrobial biofilm-associated infections.Adv. Mater.2024,36, 2306376..
Lam, S. J.; O’Brien-Simpson, N. M.; Pantarat, N.; Sulistio, A.; Wong, E. H. H.; Chen, Y. Y.; Lenzo, J. C.; Holden, J. A.; Blencowe, A.; Reynolds, E. C.; Qiao, G. G. Combating multidrug-resistant gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers.Nat. Microbiol.2016,1, 16162..
Zhang, S.; Xiao, X. M.; Qi, F.; Ma, P. C.; Zhang, W. W.; Dai, C. Z.; Zhang, D. F.; Liu, R. H. Biofilm disruption utilizingα/βchimeric polypeptide molecular brushes.Chinese J. Polym. Sci.2019,37, 1105−1112..
Chen, L.; Peng, M.; Zhou, J.; Hu, X.; Piao, Y.; Li, H.; Hu, R.; Li, Y.; Shi, L.; Liu, Y. Supramolecular photothermal cascade nano-reactor enables photothermal effect, cascade reaction , andin situhydrogelation for biofilm-associated tooth-extraction wound healing.Adv. Mater.2023,35, 2301664..
Jaeger, K.-E.; Ransac, S.; Dijkstra, B.W.; Colson, C.; van Heuvel, M.; Misset, O. Bacterial lipases.FEMS Microbiol. Rev.1994,15, 29−63..
Komnatnyy, V. V.; Chiang, W.C.; Tolker-Nielsen, T.; Givskov, M.; Nielsen, T.E. Bacteria-triggered release of antimicrobial agents.Angew. Chem. Int. Ed.2014,53, 439−441..
Abed, N.; Saïd-hassane, F.; Zouhiri, F.; Mougin, J.; Nicolas, V.; Desmaële, D.; Gref, R.; Couvreur, P. An efficient system for intracellular delivery of beta-lactam antibiotics to overcome bacterial resistance.Sci. Rep.2014,5, 13500..
Xiao, X.; Zhang, S.; Chen, S.; Qian, Y.; Xie, J.; Cong, Z.; Zhang, D.; Zou, J.; Zhang, W.; Ji, Z.; Cui, R.; Qiao, Z.; Jiang, W.; Dai, Y.; Wang, Y.; Shao, X.; Sun, Y.; Xia, J.; Fei, J.; Liu, R. H. Anα/βchimeric peptide molecular brush for eradicating MRSA biofilms and persister cells to mitigate antimicrobial resistance.Biomater. Sci.2020,8, 6883−6889..
Haas, S.; Hain, N.; Raoufi, M.; Handschuh-Wang, S.; Wang, T.; Jiang, X.; Schönherr, H. Enzyme degradable polymersomes from hyaluronic acid-block-poly(ε-caprolactone) copolymers for the detection of enzymes of pathogenic bacteria.Biomacromolecules2015,16, 832−841..
Liu, Y.; Li, Y.; Shi, L. Controlled drug delivery systems in eradicating bacterial biofilm-associated infections.J. Control. Rel.2021,329, 1102−1116..
Thorn, C. R.; Clulow, A. J.; Boyd, B. J.; Prestidge, C. A.; Thomas, N. Bacterial lipase triggers the release of antibiotics from digestible liquid crystal nanoparticles.J. Control. Rel.2020,319, 168−182..
Gupta, R.; Gupta, N.;Rathi, P. Bacterial lipases: an overview of production, purification and biochemical properties.Appl. Microbiol. Biotechnol.2004,64, 763−781..
Liu, Y.; Busscher, H.J.; Zhao, B.; Li, Y.; Zhang, Z.; Van Der Mei, H.C.; Ren, Y.; Shi, L. Surface-adaptive, antimicrobially loaded, micellar nanocarriers with enhanced penetration and killing efficiency in staphylococcal biofilms.ACS Nano2016,10, 4779−4789..
Liu, Y.; Ren, Y.; Li, Y.; Su, L.; Zhang, Y.; Huang, F.; Liu, J.; Liu, J.; van Kooten, T.G.; An, Y.; Shi, L.; van der Mei, H.; Busscher, H. Nanocarriers with conjugated antimicrobials to eradicate pathogenic biofilms evaluated in murinein vivoand humanex vivoinfection models.Acta Biomater.2018,79, 331−343..
Xiong, M.; Bao, Y.; Yang, X.; Wang, Y.; Sun, B.; Wang, J. Lipase-sensitive polymeric triple-layered nanogel for “ on-demand ” drug delivery.J. Am. Chem. Soc.2012,134, 4355−4362..
Xiong, M. H.; Li, Y. J.; Bao, Y.; Yang, X. Z.; Hu, B.; Wang, J. Bacteria-responsive multifunctional nanogel for targeted antibiotic delivery.Adv. Mater.2012,24, 6175−6180..
Chin, W.; Yang, C.; Ng, V. W. L.; Huang, Y.; Cheng, J.; Tong, Y. W.; Coady, D. J.; Fan, W.; Hedrick, J. L.; Yang, Y. Y. Biodegradable broad-spectrum antimicrobial polycarbonates: investigating the role of chemical structure on activity and selectivity.Macromolecules2013,46, 8797−8807..
Becker, G.; Wurm, F. R.; Becker, G. Ring-opening polymerization of monomers without protective groups.Chem. Soc. Rev.2018,47, 7739−7782..
Shi, Q. Q.; Zhou, X.; Xu, J.; Wang, N.; Zhang, J. L.; Hu, X. L.; Liu, S. Y. Controlled fabrication of uniform digital nanorods from precise sequence-defined amphiphilic polymers in aqueous media.Chinese J. Polym. Sci.2023,41, 768−777..
Chen, W.; Meng, F.; Cheng, R.; Deng, C.; Feijen, J.; Zhong, Z. Advanced drug and gene delivery systems based on functional biodegradable polycarbonates and copolymers.J. Control. Rel.2014,190, 398−414..
Ng, V. W. L.; Ke, X.; Lee, A. L. Z.; Hedrick, J. L.; Yang, Y. Y. Synergistic co-delivery of membrane-disrupting polymers with commercial antibiotics against highly opportunistic bacteria.Adv. Mater.2013,25, 6730−6736..
Liu, J.; Liu, W.; Weitzhandler, I.; Bhattacharyya, J.; Li, X.; Wang, J.; Qi, Y.; Bhattacharjee, S.; Chilkoti, A. Ring-opening polymerization of prodrugs: a versatile approach to prepare well-defined drug-loaded nanoparticles.Angew. Chem. Int. Ed.2015,54, 1002−1006..
Seidi, F.; Jenjob, R.; Crespy, D. Designing smart polymer conjugates for controlled release of payloads.Chem. Rev.2018,118, 3965−4036..
Ekladious, I.; Colson, Y. L.; Grinstaff, M. W. Polymer-drug conjugate therapeutics: advances, insights and prospects.Nat. Rev. Drug Discov.1982,12, 273−294..
Liu, C.; Li, L.; Guo, Z.-P.; Lin, L.; Li, Y. H.; Tian, H. Y. PLG-g-MPEG mediated multifunctional nanoparticles for photoacoustic imaging guided combined chemo/photothermal antitumor therapy.Chinese J. Polym. Sci.2023,41, 538−546..
Piao, Y. Z.; Su, L.; Hu, X.; He, W.; Hu, X.; Omolo, C.A.; Govender, T.; Li, H.; Xue, H.; Ge, Y.; Liu, Y.; Li, Y. One-component lipidic bicontinuous nanospheres as a smart drug loading platform to eradicate candida biofilms in oral and vaginal infection.Nano Today2024, 54, 102123..
Liu, Y.; van der Mei, H. C.; Zhao, B.; Zhai, Y.; Cheng, T.; Li, Y.; Zhang, Z.; Busscher, H. J.; Ren, Y.; Shi, L. Eradication of multidrug-resistant staphylococcal infections by light-activatable micellar nanocarriers in a murine model.Adv. Funct. Mater.2017,27, 1701974..
Bhargava, H. N.; Leonard, P. A. Triclosan: applications and safety.Am. J. Infect. Control1996,24, 209−218..
0
Views
26
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621