FOLLOWUS
State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
wangyaming@zzu.edu.cn
Published:1 May 2024,
Published Online:23 February 2024,
Received:29 September 2023,
Revised:1 December 2023,
Accepted:4 January 2024
Scan for full text
Zhou, C.; Chen, K.; Zhang, Z. H.; Jing, M. F.; Liu, C. T.; Shen, C. Y.; Wang, Y. M. Enhanced crystallization of poly(butylene adipate-co-terephthalate) by a self-assembly nucleating agent. Chinese J. Polym. Sci. 2024, 42, 663–674
Cheng Zhou, Kun Chen, Zi-Heng Zhang, et al. Enhanced Crystallization of Poly(butylene adipate-
Zhou, C.; Chen, K.; Zhang, Z. H.; Jing, M. F.; Liu, C. T.; Shen, C. Y.; Wang, Y. M. Enhanced crystallization of poly(butylene adipate-co-terephthalate) by a self-assembly nucleating agent. Chinese J. Polym. Sci. 2024, 42, 663–674 DOI: 10.1007/s10118-024-3092-x.
Cheng Zhou, Kun Chen, Zi-Heng Zhang, et al. Enhanced Crystallization of Poly(butylene adipate-
This work demonstrates that octamethylenedicarboxylic dibenzoylhydrazide (OMBH) is an excellent nucleating agent of poly(butylene adipate-co-terephthalate) (PBAT). The nucleation efficiency of PBAT by the OMBH could reach 59.6%. PBAT crystallized in the transcrystalline form on fine OMBH fiber. Dipole-dipole interactions between OMBH and PBAT promoted PBAT crystallization.
Poly(butylene adipate-
co
-terephthalate) (PBAT) is a promising biodegradable flexible polymer but suffers from slow crystallization rate
making it less attractive for some applications like the injection-molded products in comparison with low-density polyethylene (LDPE). This work aimed to accelerate the crystallization of PBAT by adding a self-assembly nucleating agent octamethylenedicarboxylic dibenzoylhydrazide (OMBH). PBAT/OMBH composites with various OMBH contents (0 wt%
0.5 wt%
0.7 wt%
1 wt%
2 wt%
3 wt% and 5 wt%) were prepared through melt-mixing. The effect of OMBH on the crystallization behavior
morphologies and mechanical properties of PBAT was investigated. The highest nucleation efficiency value of 59.6% was achieved for PBAT with 0.7 wt% OMBH
much higher than that of 22.7% for PBAT with 0.7 wt% talc. Atomic force microscopy results showed that OMBH formed fine fibers and induced the formation of transcrystalline layers of PBAT. Fourier transform infrared spectroscopy (FTIR) combined with two-dimensional correlation spectra suggested that the intermolecular dipole-dipole N―H···O=C interactions but not hydrogen bond between OMBH and PBAT promoted the crystallization of PBAT in the initial period of crystallization. The presence of OMBH did not change the crystal form of PBAT but had positive contribution in enhancing its crystallinity and mechanical properties. This work is essential for preparing PBAT with high crystallization rate
enhancing its potential applications in injection-molded products.
Poly(butylene adipate-co-terephthalate)BiodegradableSelf-assembly nucleating agentCrystallization
Kanwal, A.; Zhang, M.; Sharaf, F.; Li, C. Polymer pollution and its solutions with special emphasis on poly(butylene adipate terephthalate) (PBAT).Polym. Bull.2022, 79, 9303−9330..
Zhang, J.; Zhu, J.; Hua, Z.; Liu, G. M. Specific ion effects on the enzymatic degradation of polyester films.Chinese J. Polym. Sci.2023, 41, 476−482..
Chen, X.; Zeng, Z.; Ju, Y.; Zhou, M.; Bai, H.; Fu, Q. Design of biodegradable PLA/PBAT blends with balanced toughness and strength viainterfacial compatibilization and dynamic vulcanization.Polymer2023, 266, 125620..
Niu, D.; Xu, P.; Li, J.; Yang, W.; Liu, T.; Ma, P. Strong, ductile and durable poly(glycolic acid)-based films by constructing crystalline orientation, entanglement network and rigid amorphous fraction.Polymer2023, 264, 125532..
Fukushima, K.; Wu, M. H.; Bocchini, S.; Rasyida, A.; Yang, M. C. PBAT based nanocomposites for medical and industrial applications.Mater. Sci. Eng., C2012, 32, 1331−1351..
Gao, F. X.; Cai, Y.; Liu, S. J.; Wang, X. H. High-performance biodegradable PBAT/PPC composite film through reactive compatibilizer.Chinese J. Polym. Sci.2023, 41, 1051−1058..
Pan, H. W.; Wang, Y.; Jia, S. L.; Zhao, Y.; Bian, J. J.; Yang, H. L.; Hao, Y. P.; Han, L. J.; Zhang, H. L. Biodegradable poly(butylene adipate- co-terephthalate)/poly(glycolic acid) films: effect of poly(glycolic acid) crystal on mechanical and barrier properties.Chinese J. Polym. Sci.2023, 41, 1123−1132..
Jiao, J.; Zeng, X.; Huang, X. An overview on synthesis, properties and applications of poly(butylene-adipate- co-terephthalate)-PBAT.Adv. Ind. Eng. Polym. Res.2020, 3, E7−E15..
Zhao, Y.; Zhu, B.; Wang, Y.; Liu, C.; Shen, C. Effect of different sterilization methods on the properties of commercial biodegradable polyesters for single-use, disposable medical devices.Mat. Sci. Eng. C-Mater.2019, 105, 110041..
Meng, N.; Zeng, J.; Bian, F.; Zhong, G.; Li, Z.; Sun, Z.; Wang, J. Internal nanostructure and structure-processing relationship of injection molded poly(butylene adipate- co-terephthalate) studied by SAXS-CT.Polymer2021, 237, 124359..
Pavon, C.; Aldas, M.; Ramírez, H. R.; Martínez, J. L.; Arrieta, M. P. Improvement of PBAT processability and mechanical performance by blending with pine resin derivatives for injection molding rigid packaging with enhanced hydrophobicity.Polymers2020, 12, 2891..
Witt, U.; Müller, R. J.; Deckwer, W. D. Studies on sequence distribution of aliphatic/aromatic copolyesters by high-resolution13C nuclear magnetic resonance spectroscopy for evaluation of biodegradability.Macromol. Chem. Phys.1996, 197, 1525−1535..
Witt, U.; Müller, R. J.; Deckwer, W. D. Biodegradation behavior and material properties of aliphatic/aromatic polyesters of commercial importance.J. Environ. Polym. Degrad.1997, 5, 81−89..
Müller, R. J.; Witt, U.; Rantze, E.; Deckwer, W. D. Architecture of biodegradable copolyesters containing aromatic constituents.Polym. Degrad. Stabil.1998, 59, 203−208..
Cranston, E.; Kawada, J.; Raymond, S.; Morin, F. G.; Marchessault, R. H. Cocrystallization model for synthetic biodegradable poly(butylene adipate- co-butylene terephthalate).Biomacromolecules2003, 4, 995−999..
Kuwabara, K.; Gan, Z.; Nakamura, T.; Abe, H.; Doi, Y. Crystalline/amorphous phase structure and molecular mobility of biodegradable poly(butyleneadipate- co-butylene terephthalate) and related polyesters.Biomacromolecules2002, 3, 390−396..
Zhou, J.; Zheng, Y.; Shan, G.; Bao, Y.; Wang, W.; Pan, P. Stretch-induced α-to- βcrystal transition and lamellae structural evolution of poly(butylene adipate- ran-terephthalate) aliphatic-aromatic copolyester.Macromolecules2019, 52, 1334−1347..
Zhang, Q.; Chen, W.; Zhao, H.; Ji, Y.; Meng, L.; Wang, D.; Li, L.In-situtracking polymer crystallization during film blowing by synchrotron radiation X-ray scattering: the critical role of network.Polymer 2020, 198, 122492..
Aversa, C.; Barletta, M.; Cappiello, G.; Gisario, A. Compatibilization strategies and analysis of morphological features of poly(butylene adipate- co-terephthalate) (PBAT)/poly(lactic acid) PLA blends: a state-of-art review.Eur. Polym. J.2022, 173, 111304..
Nagarajan, K.; Levon, K.; Myerson, A. Nucleating agents in polypropylene.J. Therm. Anal. Calorim.2000, 59, 497−508..
Toda, A. Effect of a nucleating agent on polymer crystallization analyzed using the original Avrami model.Macromolecules2022, 55, 2202−2209..
Qiao, R.; Wang, X.; Qin, G.; Liu, Q.; Liu, J.; He, W. Preparation of organic crystal seed and its application in improving the functional period of biodegradable agricultural film.Crystals2021, 11, 826..
Pan, P.; Zhou, J.; Xu, C.; Xie, Q. 2018 , CN108384201 A.
Falcão, G. A. M.; Vitorino, M. B. C.; Almeida, T. G.; Bardi, M. A. G.; Carvalho, L. H.; Canedo, E. L. PBAT/organoclay composite films: preparation and properties.Polym. Bull.2017, 74, 4423−4436..
Santos, T. T.; Almeida, T. G.; Morais, D. D. S.; Magalhães, F. D.; Guedes, R. M.; Canedo, E. L.; Carvalho, L. H. Effect of filler type on properties of PBAT/organoclay nanocomposites.Polym. Bull.2019, 77, 901−917..
Lai, L.; Wang, S.; Li, J.; Liu, P.; Wu, L.; Wu, H.; Xu, J.; Severtson, S. J.; Wang, W. J. Stiffening, strengthening, and tougheningof biodegradable poly(butylene adipate- co-terephthalate) with a low nanoinclusion usage.Carbohydr. Polym.2020, 247, 116687..
Blomenhofer, M.; Ganzleben, S.; Hanft, D.; Schmidt, H. W.; Kristiansen, M.; Smith, P.; Stoll, K.; Mäder, D.; Hoffmann, K. “Designer” nucleating agents for polypropylene.Macromolecules 2005, 38, 3688-3695..
Kong, W.; Zhu, B.; Su, F.; Wang, Z.; Shao, C.; Wang, Y.; Liu, C.; Shen, C. Melting temperature, concentration and cooling rate-dependent nucleating ability of a self-assembly aryl amide nucleator on poly(lactic acid) crystallization.Polymer2019, 168, 77−85..
Abraham, F.; Schmidt, H. W. 1,3,5-Benzenetrisamide based nucleating agents for poly(vinylidene fluoride).Polymer 2010, 51, 913-921..
Xing, Q.; Zhang, X.; Dong, X.; Liu, G.; Wang, D. Low-molecular weight aliphatic amides as nucleating agents for poly(L-lactic acid): conformation variation induced crystallization enhancement.Polymer2012, 53, 2306−2314..
Bledsoe, J. C.; Crane, G. H.; Locklin, J. J. Beyond lattice matching: the role of hydrogen bonding in epitaxial nucleation of poly(hydroxyalkanoates) by methylxanthines.ACS Appl. Polym. Mater.2023, 5, 3858−3865..
He, Z.; Shao, H.; Zhang, N.; Li, J.; Xiao, H.; Weng, T.; Zhou, M.; Wen, B.; Chen, Y. The crystalline behavior of poly(L-lactide) induced by nucleating agents with amide structure: the effect of benzamide molecule symmetry.J. Polym. Sci.2023, 61, 67−82..
Li, C.; Luo, S.; Wang, J.; Wu, H.; Guo, S.; Zhang, X. Conformational regulation and crystalline manipulation of PLLA through a self-assembly nucleator.Biomacromolecules2017, 18, 1440−1448..
Liu, C.; Noda, I.; Chase, D. B.; Zhang, Y.; Qu, J.; Jia, M.; Ni, C.; Rabolt, J. F. Crystallization retardation of ultrathin films of poly[( R)-3-hydroxybutyrate]and a random copolymer poly[( R)-3-hydroxybutyrate- co-( R)-3-hydroxyhexanoate]on an aluminum oxide surface.Macromolecules2019, 52, 7343−7352..
Li, Y.; Zhang, G.; Song, S.; Xu, H.; Pan, M.; Zhong, G. How chain intermixing dictates the polymorphism of PVDF in poly(vinylidene fluoride)/polymethylmethacrylate binary system during recrystallization: a comparative study on core-shell particles and latex blend.Polymers2017, 9, 448..
Sun, X.; Zhu, Z.; Xie, Z.; Liu, J.; Yin, J.; Yang, Y.; Jia, C.; Liu, F.; Yang, J. Self-assembly crystal, manipulated polymorphic crystalline structure and elevated thermal degradation temperature of poly(1,4-butylene adipate): effects of an aryl bisamide-based compound.Compos. Commun.2021, 25, 100765..
Zhang, Y.; Zhou, P.; Mao, J.; Liu, N. Influences of octamethylenedicarboxylic dibenzoylhydrazide on crystallization, melting behaviors, and properties of isotactic polypropylene.Polym. Bull.2019, 76, 1685−1696..
Fillon, B.; Lotz, B.; Thierry, A.; Wittmann, J. C. Self-nucleation and enhanced nucleation of polymers. Definition of a convenient calorimetric “efficiency scale” and evaluation of nucleating additives in isotactic polypropylene ( αphase).J. Polym. Sci., Part B: Polym. Phys.1993, 31, 1395−1405..
Moon, C. K. Effect of molecular weight and fiber diameter on the interfacial behavior in glass fiber/PP composites.J. Appl. Polym. Sci.1998, 67, 1191−1197..
Ning, N.; Deng, H.; Luo, F.; Wang, K.; Zhang, Q.; Chen, F.; Fu, Q. Effect of whiskers nucleation ability and shearing function on the interfacial crystal morphology of polyethylene (PE)/raw whiskers composites.Compos. Part B2011, 42, 631−637..
Fan, Y.; Zhu, J.; Yan, S.; Chen, X.; Yin, J. Nucleating effect and crystal morphology controlling based on binary phase behavior between organic nucleating agent and poly(L-lactic acid).Polymer2015, 67, 63−71..
Li, C.; Jiang, T.; Wang, J.; Peng, S.; Wu, H.; Shen, J.; Guo, S.; Zhang, X.; Eileen, H. J. Enhancing the oxygen-barrier properties of polylactide by tailoring the arrangement of crystalline lamellae.ACS Sustainable Chem. Eng.2018, 6, 6247−6255..
Cleveland, J. P.; Anczykowski, B.; Schmid, A. E.; Elings, V. B. Energy dissipation in tapping-mode atomic force microscopy.Appl. Phys. Lett.1998, 72, 2613−2615..
Magonov, S.; Elings, V.; Whangbo, M. H. Phase imaging and stiffness in tapping-mode atomic force microscopy.Surf. Sci.1997, 375, L385−L391..
San Paulo, A.; García, R. Tip-surface forces, amplitude, and energy dissipation in amplitude-modulation (tapping mode) force microscopy.Phys. Rev. B2001, 64, 193411..
Yue, Y.; Yi, J.; Wang, L.; Feng, J. Toward a more comprehensive understanding on the structure evolution and assembly formation of a bisamide nucleating agent in polypropylene melt.Macromolecules2020, 53, 4381−4394..
Wang, W.; Saperdi, A.; Dodero, A.; Castellano, M.; Müller, A. J.; Dong, X.; Wang, D.; Cavallo, D. Crystallization of a self-assembling nucleator in poly(L-lactide) melt.Cryst. Growth Des.2021, 21, 5880−5888..
Wu, Z.; Wang, G.; Zhang, M.; Wang, K.; Fu, Q. Facilely assess the soluble behaviour of the β-nucleating agent by gradient temperature field for the construction of heterogeneous crystalline-frameworks in iPP.Soft Matter2016, 12, 594−601..
Xing, Q.; Wang, Z.; Li, R.; Dong, X.; Wang, D. Effect of solubility of a hydrazide compound on the crystallization behavior of poly(L-lactide).RSC Adv.2016, 6, 113377−113389..
Bumbudsanpharoke, N.; Wongphan, P.; Promhuad, K.; Leelaphiwat, P.; Harnkarnsujarit, N. Morphology and permeability of bio-based poly(butylene adipate- co-terephthalate) (PBAT), poly(butylene succinate) (PBS) and linear low-density polyethylene (LLDPE) blend films control shelf-life of packaged bread.Food Control2022, 132, 108541..
Krache, R.; Benavente, R.; López Majada, J. M.; Pereña, J. M.; Cerrada, M. L.; Pérez, E. Competition between α, β, and γpolymorphs in a β-nucleated metallocenic isotactic polypropylene.Macromolecules2007, 40, 6871−6878..
Noda, I.; Dowrey, A. E.; Marcott, C. Recentdevelopments in two-dimensional infrared (2D IR) correlation spectroscopy.Appl. Spectrosc.1993, 47, 1317−1323..
Noda, I. Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy.Appl. Spectrosc.1993, 47, 1329−1336..
Noda, I.; Story, G. M.; Marcott, C. Pressure-induced transitions of polyethylene studied by two-dimensional infrared correlation spectroscopy.Vib. Spectrosc.1999, 19, 461−465..
Tashiro, K.; Nakai, Y.; Kobayashi, M.; Tadokoro, H. Solid-state transition of poly(butylene terephthalate) induced by mechanical deformation.Macromolecules1980, 13, 137−145..
Wang, Z.; Hsiao, B. S.; Sirota, E. B.; Agarwal, P.; Srinivas, S. Probing the early stages of melt crystallization in polypropylene by simultaneous small- and wide-angle X-ray scattering and laser light scattering.Macromolecules2000, 33, 978−989..
An, H.; Zhao, B.; Ma, Z.; Shao, C.; Wang, X.; Fang, Y.; Li, L.; Li, Z. Shear-induced conformational ordering in the melt of isotactic polypropylene.Macromolecules2007, 40, 4740−4743..
Fukao, K.; Miyamoto, Y. Dynamical transition and crystallization of polymers.Phys. Rev. Lett.1997, 79, 4613..
0
Views
47
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution