Key Laboratory of Polymer Chemistry and Physics (Ministry of Education), School of Materials Science and Engineering, Peking University, Beijing 100871, China
tinglei@pku.edu.cn
Scan for full text
Wang, X. Q.; Song, C.; Lei, T. Open-shell oligomers and polymers: theory, characterization methods, molecular design, and applications. Chinese J. Polym. Sci. 2024, 42, 417–436
Xue-Qing Wang, Cheng Song, Ting Lei. Open-Shell Oligomers and Polymers: Theory, Characterization Methods, Molecular Design, and Applications. [J]. Chinese Journal of Polymer Science 42(4):417-436(2024)
Wang, X. Q.; Song, C.; Lei, T. Open-shell oligomers and polymers: theory, characterization methods, molecular design, and applications. Chinese J. Polym. Sci. 2024, 42, 417–436 DOI: 10.1007/s10118-024-3087-7.
Xue-Qing Wang, Cheng Song, Ting Lei. Open-Shell Oligomers and Polymers: Theory, Characterization Methods, Molecular Design, and Applications. [J]. Chinese Journal of Polymer Science 42(4):417-436(2024) DOI: 10.1007/s10118-024-3087-7.
Open-shell oligomers and polymers have exhibited interesting optoelectronic and magnetic properties
sparking new research interests recently. This review aims to provide an introduction to the theory and characterization methods of open-shell oligomers and polymers
along with an overview of their design strategy and applications.
Open-shell oligomers and polymers have exhibited intriguing electronic and magnetic properties
making them highly desirable for a wide range of applications
including ambipolar organic field-effect transistors (OFETs)
photodetectors
organic thermoelectrics
and spintronics. Although open-shell ground states have been observed in certain small molecules and doped organic semiconductors
the exploration of open-shell ground-state conjugated polymers is still limited
and the strategies for designing these polymers remain obscure. This review aims to briefly introduce the theory and characterization methods of open-shell conjugated polymers
along with an overview of recent progress and applications. The objective is to stimulate further advancements and investigations in this promising area by shedding light on the potential of open-shell conjugated polymers and the challenges that lie ahead.
Conjugated polymersOpen-shell moleculesHigh-spin ground stateDonor-acceptor (D-A) polymersOptoelectronic and magnetic properties
Gallagher, N. M.; Olankitwanit, A.; Rajca, A. High-spin organic molecules.J. Org. Chem.2015, 80, 1291−1298..
Bujak, P.; Kulszewicz-Bajer, I.; Zagorska, M.; Maurel, V.; Wielgus, I.; Pron, A. Polymers for electronics and spintronics.Chem. Soc. Rev.2013, 42, 8895−8999..
Abe, M. Diradicals.Chem. Rev.2013, 113, 7011−7088..
Dediu, V. A.; Hueso, L. E.; Bergenti, I.; Taliani, C. Spin routes in organic semiconductors.Nat. Mater.2009, 8, 707−716..
Chen, Z. X.; Li, Y.; Huang, F. Persistent and stable organic radicals: design, synthesis, and applications.Chem2021, 7, 288−332..
Ji, L.; Shi, J.; Wei, J.; Yu, T.; Huang, W. Air-stable organic radicals: new-generation materials for flexible electronics.Adv. Mater.2020, 32, 1908015..
Eedugurala, N.; Steelman, M. E.; Mahalingavelar, P.; Adams, D. J.; Mayer, K. S.; Liu, C. T.; Benasco, A.; Ma, G.; Gu, X.; Bowman, M. K.; Azoulay, J. D. Strong acceptor annulation enables control of electronic structure and spin configuration in donor-acceptor conjugated polymers.Chem. Mater.2023, 35, 3115−3123..
Chen, X. X.; Li, J. T.; Fang, Y. H.; Deng, X. Y.; Wang, X. Q.; Liu, G.; Wang, Y.; Gu, X.; Jiang, S. D.; Lei, T. High-mobility semiconducting polymers with different spin ground states.Nat. Commun.2022, 13, 2258..
Mayer, K. S.; Adams, D. J.; Eedugurala, N.; Lockart, M. M.; Mahalingavelar, P.; Huang, L.; Galuska, L. A.; King, E. R.; Gu, X.; Bowman, M. K.; Azoulay, J. D. Topology and ground state control in open-shell donor-acceptor conjugated polymers.Cell Rep. Phys. Sci.2021, 2, 100467..
London, A. E.; Chen, H.; Sabuj, M. A.; Tropp, J.; Saghayezhian, M.; Eedugurala, N.; Zhang, B. A.; Liu, Y.; Gu, X.; Wong, B. M.; Rai, N.; Bowman, M. K.; Azoulay, J. D. A high-spin ground-state donor-acceptor conjugated polymer.Sci. Adv.2019, 5, eaav2336..
Gopalakrishna, T. Y.; Zeng, W.; Lu, X.; Wu, J. From open-shell singlet diradicaloids to polyradicaloids.Chem. Commun.2018, 54, 2186−2199..
Hu, X.; Wang, W.; Wang, D.; Zheng, Y. The electronic applications of stable diradicaloids: present and future.J. Mater. Chem. C2018, 6, 11232−11242..
Stuyver, T.; Chen, B.; Zeng, T.; Geerlings, P.; De Proft, F.; Hoffmann, R. Do Diradicals behave like radicals.Chem. Rev.2019, 119, 11291−11351..
Zhang, K.; Monteiro, M. J.; Jia, Z. Stable organic radical polymers: synthesis and applications.Polym. Chem.2016, 7, 5589−5614..
Tan, Y.; Hsu, S.-N.; Tahir, H.; Dou, L.; Savoie, B. M.; Boudouris, B. W. Electronic and spintronic open-shell macromolecules, Quo Vadis.J. Am. Chem. Soc.2022, 144, 626−647..
Ji, X.; Fang, L. Quinoidal conjugated polymers with open-shell character.Polym. Chem.2021, 12, 1347−1361..
Flynn, C. R.; Michl, J. π,π-Biradicaloid hydrocarbons. o-Xylylene. Photochemical preparation from 1,4-dihydrophthalazine in rigid glass, electric spectroscopy, and calculations.J. Am. Chem. Soc.1974, 96, 3280−3288..
Yamanaka, S.; Kawakami, T.; Nagao, H.; Yamaguchi, K. Effective exchange integrals for open-shell species by density-functional methods.Chem. Phys. Lett.1994, 231, 25−33..
Burrezo, P. M.; Zafra, J. L.; López Navarrete, J. T.; Casado, J. Quinoidal/aromatic transformations in π-conjugated oligomers: vibrational raman studies on the limits of rupture for π-bonds.Angew. Chem. Int. Ed.2017, 56, 2250−2259..
Misurkin, I. A. E.; Ovchinnikov, A. A. The electronic structures and properties of polymeric molecules with conjugated bonds.Russ. Chem. Rev.1977, 46, 967..
Rajca, A.; Shiraishi, K.; Pink, M.; Rajca, S. Triplet ( S= 1) ground state aminyl diradical.J. Am. Chem. Soc.2007, 129, 7232−7233..
Bushby, R. J.; Taylor, N.; Williams, R. A. Ferromagnetic spin-coupling 4,4″-through metaterphenyl: models for high-spin polymers.J. Mater. Chem.2007, 17, 955−964..
Wienk, M. M.; Janssen, R. A. Stable triplet-state di (cation radicals) of a meta- paraaniline oligomer by “acid doping”.J. Am. Chem. Soc.1996, 118, 10626−10628..
Rajca, A., The physical organic chemistry of very high-spin polyradicals. InAdvances in Physical Organic Chemistry, Richard, J. P., Ed. Academic Press: 2005 ; Vol. 40, pp. 153−199..
Evangelista, F. A.; Allen, W. D.; Schaefer III, H. F. Coupling term derivation and general implementation of state-specific multireference coupled cluster theories.J. Chem. Phys.2007, 127, 024102..
Carpenter, B. K.; Pittner, J.; Veis, L. Ab initio calculations on the formation and rearrangement of spiropentane.J. Phys. Chem. A2009, 113, 10557−10563..
Frisch, M. e.; Trucks, G.; Schlegel, H. B.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.;Petersson, G.; Nakatsuji, H., Gaussian 16. Gaussian, Inc. Wallingford, CT: 2016 .
Yamaguchi, K.; Takahara, Y.; Fueno, T.; Nasu, K. Ab initio MO calculations of effective exchange integrals between transition-metal ions viaoxygen dianions: nature of the copper-oxygen bonds and superconductivity.Jpn. J. Appl. Phys.1987, 26, L1362..
Noodleman, L. Valence bond description of antiferromagnetic coupling in transition metal dimers.J. Chem. Phys.1981, 74, 5737−5743..
Yamaguchi, K.; Jensen, F.; Dorigo, A.; Houk, K. A spin correction procedure for unrestricted Hartree-Fock and Møller-Plesset wavefunctions for singlet diradicals and polyradicals.Chem. Phys. Lett.1988, 149, 537−542..
Kitagawa, Y.; Saito, T.; Ito, M.; Shoji, M.; Koizumi, K.; Yamanaka, S.; Kawakami, T.; Okumura, M.; Yamaguchi, K. Approximately spin-projected geometry optimization method and its application to di-chromium systems.Chem. Phys. Lett.2007, 442, 445−450..
Nakano, M.; Minami, T.; Fukui, H.; Yoneda, K.; Shigeta, Y.; Kishi, R.; Champagne, B.; Botek, E. Approximate spin-projected spin-unrestricted density functional theory method: Application to the diradical character dependences of the (hyper)polarizabilities in p-quinodimethane models.Chem. Phys. Lett.2010, 501, 140−145..
Thomas, A.; Bhanuprakash, K.; Prasad, K. M. M. K. Near infrared absorbing benzobis(thiadiazole) derivatives: computational studies point to biradical nature of the ground states.J. Phys. Org. Chem.2011, 24, 821−832..
Nakano, M. Electronic structure of open-shell singlet molecules: diradical character viewpoint.Top. Curr. Chem.2017, 375, 47..
Sabuj, M. A.; Huda, M. M.; Sarap, C. S.; Rai, N. Benzobisthiadiazole-based high-spin donor-acceptor conjugated polymers with localized spin distribution.Mater. Adv.2021, 2, 2943−2955..
Sabuj, M. A.; Muoh, O.; Huda, M. M.; Rai, N. Non-Aufbau orbital ordering and spin density modulation in high-spin donor-acceptor conjugated polymers.Phys. Chem. Chem. Phys.2022, 24, 23699−23711..
Adams, D. J.; Mayer, K. S.; Steelman, M.; Azoulay, J. D. Magnetic characterization of open-shell donor-acceptor conjugated polymers.J. Phys. Chem. C2022, 126, 5701−5710..
Moss, R. A.; Platz, M. S.; Jones Jr, M. inReactive Intermediate Chemistry. Wiley, 2004 ..
Roessler, M. M.; Salvadori, E. Principles and applications of EPR spectroscopy in the chemical sciences.Chem. Soc. Rev.2018, 47, 2534−2553..
Bleaney, B.; Bowers, K. Anomalous paramagnetism of copper acetate.Proc. L., Seri. A1952, 214, 451−465..
Jenks, W.; Sadeghi, S.; Wikswo Jr, J. P. SQUIDs for nondestructive evaluation.J. Phys. D: Appl. Phys.1997, 30, 293..
Buchner, M.; Höfler, K.; Henne, B.; Ney, V.; Ney, A. Tutorial: basic principles, limits of detection, and pitfalls of highly sensitive SQUID magnetometry for nanomagnetism and spintronics.J. Appl. Phys.2018, 124, 161101..
Bain, G. A.; Berry, J. F. Diamagnetic corrections and Pascal’s constants.J. Chem. Edu.2008, 85, 532..
Dressler, J. J.; Valdivia, A. C.; Kishi, R.; Rudebusch, G. E.; Ventura, A. M.; Chastain, B. E.; Gómez-García, C. J.; Zakharov, L. N.; Nakano, M.; Casado, J. Diindenoanthracene diradicaloids enable rational, incremental tuning of their singlet-triplet energy gaps.Chem2020, 6, 1353−1368..
Cullity, B. D.; Graham, C. D. inIntroduction to magnetic materials. John Wiley& Sons: 2011 ..
Steelman, M. E.; Adams, D. J.; Mayer, K. S.; Mahalingavelar, P.; Liu, C. T.; Eedugurala, N.; Lockart, M.; Wang, Y.; Gu, X.; Bowman, M. K.; Azoulay, J. D. Magnetic ordering in a high-spin donor-acceptor conjugated polymer.Adv. Mater.2022, 34, 2206161..
Darby, M. I. Tables of the Brillouin function and of the related function for the spontaneous magnetization.Br. J. Appl. Phys.1967, 18, 1415..
Rajca, A.; Wongsriratanakul, J.; Rajca, S. Magnetic ordering in an organic polymer.Science2001, 294, 1503−1505..
Li, Y.; Li, L.; Wu, Y.; Li, Y. A review on the origin of synthetic metal radical: singlet open-shell radical ground state.J. Phys. Chem. C2017, 121, 8579−8588..
Thiele, J.; Balhorn, H. Ueber einen chinoïden Kohlenwasserstoff.Ber. Dtsch. Chem. Ges.1904, 37, 1463−1470..
Tschitschibabin, A. E. Über einige phenylierte Derivate des p,p-Ditolyls.Ber. Dtsch. Chem. Ges.1907, 40, 1810−1819..
Melby, L.; Harder, R.; Hertler, W.; Mahler, W.; Benson, R.; Mochel, W. Substituted quinodimethans. II. Anion-radical derivatives and complexes of 7,7,8,8-tetracyanoquinodimethan.J. Am. Chem. Soc.1962, 84, 3374−3387..
Maxfield, M.; Bloch, A. N.; Cowan, D. O. Large electron acceptors for molecular metals: 13,13,14,14-tetracyano-4,5,9,10-tetrahydro-2,7-pyrenoquinodimethane (TCNTP) anions of 13,13,14,14-tetracyano-2,7-pyrenoquinodimethane (TCNP).J. Org. Chem.1985, 50, 1789−1796..
Zeng, Z.; Ishida, M.; Zafra, J. L.; Zhu, X.; Sung, Y. M.; Bao, N.; Webster, R. D.; Lee, B. S.; Li, R. W.; Zeng, W. Pushing extended p-quinodimethanes to the limit: stable tetracyano-oligo ( N-annulated perylene) quinodimethanes with tunable ground states.J. Am. Chem. Soc.2013, 135, 6363−6371..
Yui, K.; Aso, Y.; Otsubo, T.; Ogura, F. Novel electron acceptors bearing a heteroquinonoid system. i. Synthesis and conductive complexes of 5,5′-bis(dicyanomethylene)-5,5′-dihydro-Δ2,2′-bithiophene and related compounds.Bull. Chem. Soc. Jpn.1989, 62, 1539−1546..
Takahashi, T.; Matsuoka, K. I.; Takimiya, K.; Otsubo, T.; Aso, Y. Extensive quinoidal oligothiophenes with dicyanomethylene groups at terminal positions as highly amphoteric redox molecules.J. Am. Chem. Soc.2005, 127, 8928−8929..
Ponce Ortiz, R.; Casado, J.; Hernández, V.; López Navarrete, J. T.; Viruela, P. M.; Ortí, E.; Takimiya, K.; Otsubo, T. On the biradicaloid nature of long quinoidal oligothiophenes: experimental evidence guided by theoretical studies.Angew. Chem.2007, 119, 9215−9219..
Slota, M.; Keerthi, A.; Myers, W. K.; Tretyakov, E.; Baumgarten, M.; Ardavan, A.; Sadeghi, H.; Lambert, C. J.; Narita, A.; Müllen, K.; Bogani, L. Magnetic edge states and coherent manipulation of graphene nanoribbons.Nature2018, 557, 691−695..
Zeng, W.; Phan, H.; Herng, T. S.; Gopalakrishna, T. Y.; Aratani, N.; Zeng, Z.; Yamada, H.; Ding, J.; Wu, J. Rylene ribbons with unusual diradical character.Chem2017, 2, 81−92..
Guo, J.; Tian, X.; Wang, Y.; Dou, C. Progress of indeno-type organic diradicaloids.Chem. Res. Chin. Univ.2023, 39, 161−169..
Hayashi, H.; Barker, J. E.; Cárdenas Valdivia, A.; Kishi, R.; MacMillan, S. N.; Gómez-García, C. J.; Miyauchi, H.; Nakamura, Y.; Nakano, M.; Kato, S. I.; Haley, M. M.; Casado, J. Monoradicals and diradicals of dibenzofluoreno[3,2- b]fluorene isomers: mechanisms of electronic delocalization.J. Am. Chem. Soc.2020, 142, 20444−20455..
Chen, Z.; Li, W.; Zhang, Y.; Wang, Z.; Zhu, W.; Zeng, M.; Li, Y. Aggregation-induced radical of donor-acceptor organic semiconductors.J. Phys. Chem. Lett.2021, 12, 9783−9790..
Liu, Y.; Phan, H.; Herng, T. S.; Gopalakrishna, T. Y.; Ding, J.; Wu, J. Toward benzobis(thiadiazole)-based diradicaloids.Chem. Asian J.2017, 12, 2177−2182..
Chen, Z.; Li, W.; Sabuj, M. A.; Li, Y.; Zhu, W.; Zeng, M.; Sarap, C. S.; Huda, M. M.; Qiao, X.; Peng, X.; Ma, D.; Ma, Y.; Rai, N.; Huang, F. Evolution of the electronic structure in open-shell donor-acceptor organic semiconductors.Nat. Commun.2021, 12, 5889..
Tam, T. L. D.; Wu, G.; Chien, S. W.; Lim, S. F. V.; Yang, S. W.; Xu, J. High spin pro-quinoid benzo[1,2- c;4,5- c′]bisthiadiazole conjugated polymers for high-performance solution-processable polymer thermoelectrics.ACS Mater. Lett.2020, 2, 147−152..
Yuen, J. D.; Wang, M.; Fan, J.; Sheberla, D.; Kemei, M.; Banerji, N.; Scarongella, M.; Valouch, S.; Pho, T.; Kumar, R.; Chesnut, E. C.; Bendikov, M.; Wudl, F. Importance of unpaired electrons in organic electronics.J. Polym. Sci., Part A: Polym. Chem.2015, 53, 287−293..
Abarbanel, O. D.; Rozon, J.; Hutchison, G. R. Strategies for computer-aided discovery of novel open-shell polymers.J. Phys. Chem. Lett.2022, 13, 2158−2164..
Nishide, H.; Ozawa, T.; Miyasaka, M.; Tsuchida, E. A nanometer-sized high-spin polyradical: poly(4-phenoxyl-1,2-phenylenevinylene) planarily extended in a non-kekulé fashion and its magnetic force microscopic images.J. Am. Chem. Soc.2001, 123, 5942−5946..
Kaneko, T.; Makino, T.; Miyaji, H.; Teraguchi, M.; Aoki, T.; Miyasaka, M.; Nishide, H. Ladderlike ferromagnetic spin coupling network on a π-conjugated pendant polyradical.J. Am. Chem. Soc.2003, 125, 3554−3557..
Kaneko, T.; Matsubara, T.; Aoki, T. Synthesis of a pendant polyradical with a new π-conjugated polymer backbone containing an anthracene skeleton and its ferromagnetic spin coupling.Chem. Mater.2002, 14, 3898−3906..
Lu, X.; Lee, S.; Kim, J. O.; Gopalakrishna, T. Y.; Phan, H.; Herng, T. S.; Lim, Z.; Zeng, Z.; Ding, J.; Kim, D.; Wu, J. Stable 3,6-linked fluorenyl radical oligomers with intramolecular antiferromagnetic coupling and polyradical characters.J. Am. Chem. Soc.2016, 138, 13048−13058..
Lu, X.; Lee, S.; Hong, Y.; Phan, H.; Gopalakrishna, T. Y.; Herng, T. S.; Tanaka, T.; Sandoval-Salinas, M. E.; Zeng, W.; Ding, J.; Casanova, D.; Osuka, A.; Kim, D.; Wu, J. Fluorenyl based macrocyclic polyradicaloids.J. Am. Chem. Soc.2017, 139, 13173−13183..
Rajca, A.; Wongsriratanakul, J.; Rajca, S. Organic spin clusters: macrocyclic-macrocyclic polyarylmethyl polyradicals with very high spin S= 5−13.J. Am. Chem. Soc.2004, 126, 6608−6626..
Rajca, A.; Rajca, S.; Wongsriratanakul, J. Very high-spin organic polymer: π-conjugated hydrocarbon network with average spin of S≥ 40.J. Am. Chem. Soc.1999, 121, 6308−6309..
Sirringhaus, H. 25thAnniversary article: organic field-effect transistors: the path beyond amorphous silicon.Adv. Mater. 2014 ,26, 1319−1335..
Chou, Y. H.; Chang, H. C.; Liu, C. L.; Chen, W. C. Polymeric charge storage electrets for non-volatile organic field effect transistor memory devices.Polym. Chem.2015, 6, 341−352..
Knopfmacher, O.; Hammock, M. L.; Appleton, A. L.; Schwartz, G.; Mei, J.; Lei, T.; Pei, J.; Bao, Z. Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment.Nat. Commun.2014, 5, 2954..
Sokolov, A. N.; Tee, B. C.; Bettinger, C. J.; Tok, J. B. H.; Bao, Z. Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications.Acc. Chem. Res.2012, 45, 361−371..
Singh, T. B.; Meghdadi, F.; Günes, S.; Marjanovic, N.; Horowitz, G.; Lang, P.; Bauer, S.; Sariciftci, N. S. High-performance ambipolar pentacene organic field-effect transistors on poly(vinyl alcohol) organic gate dielectric.Adv. Mater.2005, 17, 2315−2320..
Anthopoulos, T. D.; Setayesh, S.; Smits, E.; Cölle, M.; Cantatore, E.; de Boer, B.; Blom, P. W. M.; de Leeuw, D. M. Air-stable complementary-like circuits based on organic ambipolar transistors.Adv. Mater.2006, 18, 1900−1904..
Kim, Y.; Yang, D.; Kim, Y. J.; Jung, E.; Park, J. J.; Choi, Y.; Kim, Y.; Mathur, S.; Kim, D. Y. Azaquinoid-based high spin open-shell conjugated polymer for n-type organic field-effect transistors.Adv. Mater. Interfaces2023, 10, 2201205..
Wei, X.; Pan, Y.; Zhang, W.; Zhou, Y.; Li, H.; Wang, L.; Yu, G. Incorporation of the benzobisthiadiazole unit leads to open-shell conjugated polymers with n-type charge transport properties.Macromolecules2023, 56, 2980−2989..
Vella, J. H.; Huang, L.; Eedugurala, N.; Mayer, K. S.; Ng, T. N.; Azoulay, J. D. Broadband infrared photodetection using a narrow bandgap conjugated polymer.Sci. Adv.2021, 7, eabg2418..
Huang, L.; Eedugurala, N.; Benasco, A.; Zhang, S.; Mayer, K. S.; Adams, D. J.; Fowler, B.; Lockart, M. M.; Saghayezhian, M.; Tahir, H.; King, E. R.; Morgan, S.; Bowman, M. K.; Gu, X.; Azoulay, J. D. Open-shell donor-acceptor conjugated polymers with high electrical conductivity.Adv. Funct. Mater.2020, 30, 1909805..
Tam, T. L. D.; Ng, C. K.; Lim, S. L.; Yildirim, E.; Ko, J.; Leong, W. L.; Yang, S.-W.; Xu, J. Proquinoidal-conjugated polymer as an effective strategy for the enhancement of electrical conductivity and thermoelectric properties.Chem. Mater.2019, 31, 8543−8550..
Yuan, D.; Guo, Y.; Zeng, Y.; Fan, Q.; Wang, J.; Yi, Y.; Zhu, X. Air-stable n-type thermoelectric materials enabled by organic diradicaloids.Angew. Chem. Int. Ed.2019, 58, 4958−4962..
Tahir, H.; Eedugurala, N.; Hsu, S. N.; Mahalingavelar, P.; Savoie, B. M.; Boudouris, B. W.; Azoulay, J. D. Large room-temperature magnetoresistance in a high-spin donor-acceptor conjugated polymer.Adv. Mater.2023, 36, 2306389..
0
Views
71
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution