FOLLOWUS
State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
xuxf@ecust.edu.cn
Published:01 September 2024,
Published Online:01 March 2024,
Received:28 October 2023,
Revised:15 December 2023,
Accepted:25 December 2023
Scan for full text
Xu, X. F. Surface polarization effects on collapse transition of polyelectrolyte brushes. Chinese J. Polym. Sci. 2024, 42, 1313–1320
Xiao-Fei Xu. Surface Polarization Effects on Collapse Transition of Polyelectrolyte Brushes. [J]. Chinese Journal of Polymer Science 42(9):1313-1320(2024)
Xu, X. F. Surface polarization effects on collapse transition of polyelectrolyte brushes. Chinese J. Polym. Sci. 2024, 42, 1313–1320 DOI: 10.1007/s10118-024-3086-8.
Xiao-Fei Xu. Surface Polarization Effects on Collapse Transition of Polyelectrolyte Brushes. [J]. Chinese Journal of Polymer Science 42(9):1313-1320(2024) DOI: 10.1007/s10118-024-3086-8.
This work demonstrated the importance of simultaneously taking the image charge effect and ion solvation beyond point-charge model into consideration when modeling the surface polarization effect.
Polyelectrolyte brushes (PEBs) are commonly used to modify surface that have attracted great research interest. The dielectric permittivity of the grafted surface is typically significantly different from that of solution
which results in surface polarization (SP) effect with a jump of electric field. It is thus important to study how SP alters the PEB’s structure and properties. In this work
the SP effects on PEB structure was studied using a statistical thermodynamic theory. The free energy functional to describe SP effect was constructed by using the image-charge method. Meanwhile
the electrostatic potential was solved from a modified Poisson-Boltzmann equation taking the ion solvation effect into consideration. In the absence of SP
the thickness of PEB exhibited a continuous collapse transition when decreasing the solvent quality. In the presence of SP
the collapse became a jump-like transition. Free energy analysis showed that the long-range Coulombic interaction dominated the transition because of the enhanced counterion condensation in the presence of SP. The theory provides an effective tool to study SP effect on PEBs
and the results explain the underlying physics in PEB collapse transition.
Surface polarizationPolyelectrolyte brushImage chargeIon solvationPolyelectrolyte collapse transition
Chen, W. L.; Cordero, R.; Tran, H.; Ober, C. K. 50thAnniversary perspective: polymer brushes: novel surfaces for future materials.Macromolecules 2017 ,50, 4089–4113..
Xu, X.; Billing, M.; Ruths, M.; Klok, H.; Yu, J. Structure and functionality of polyelectrolyte brushes: a surface force perspective.Chem. Asian J.2018,13, 3411−3436..
Jing, G.; Tang, W.; Zhao, S.; Xu, X. Reaction and diffusion coupling on polymer-modified surface: insights from dynamic reaction density functional theory.Ind. Eng. Chem. Res.2023,62, 9563−9571..
Kaang, B. K.; Han, N.; Lee, H. J.; Choi, W. S. Polyelectrolyte brush-grafted polydopamine-based catalysts with enhanced catalytic activity and stability.ACS Appl. Mater. Interfaces2018,10, 1113−1124..
Qiu, G.; Qiu, Q.; Qing, L.; Zhou, J.; Xu, X.; Zhao, S. Effects of polyelectrolyte surface coating on the energy storage performance in supercapacitors.J. Phys. Chem. C2022,126, 8218−8226..
Zhang, Y.; Mulvenna, R. A.; Qu, S.; Boudouris, B. W.; Phillip, W. A. Block polymer membranes functionalized with nanoconfined polyelectrolyte brushes achieve sub-nanometer selectivity.ACS Macro Lett.2017,6, 726−732..
Onishchenko, D. V.; Popovich, A. A.; Boiko, Yu. N. Carbon-silicon anode composites for lithium-ion (polymer) rechargeable batteries.Russ. J. Non-Ferrous Metals2010,51, 169−172..
Gui, C.; Zhang, Y.; Jin, R.; Song, Y.; Li, R.; Xing, Y. Fabrication of hierarchically porous carbon nanofibers from immiscible pan/pvdf polymer blends as electrode materials.Fib. Polym.2021,22, 972−980..
Wang, Z.; Zhang, W.; Tan, Y.; Liu, Y.; Kong, L.; Kang, L.; Ran, F. Electrolyte-philic electrode material with a functional polymer brush.ACS Appl. Mater. Interfaces2019,11, 16087−16095..
Yamazoe, K.; Higaki, Y.; Inutsuka, Y.; Miyawaki, J.; Cui, Y. T.; Takahara, A.; Harada, Y. Enhancement of the hydrogen-bonding network of water confined in a polyelectrolyte brush.Langmuir2017,33, 3954−3959..
Bagchi, D.; Nguyen, T. D.; Olvera de la Cruz, M. Surface polarization effects in confined polyelectrolyte solutions.Proceed. Nat. Acad. Sci.2020,117, 19677−19684..
Nap, R. J.; Tagliazucchi, M.; Szleifer, I. Born energy, acid-base equilibrium, structure and interactions of end-grafted weak polyelectrolyte layers.J. Chem. Phys.2014,140, 024910..
Kumar, R.; Sumpter, B. G.; Kilbey, S. M. Charge regulation and local dielectric function in planar polyelectrolyte brushes.J. Chem. Phys.2012,136, 234901..
Pezeshkian, W.; Nikoofard, N.; Norouzi, D.; Mohammad-Rafiee, F.; Fazli, H. Distribution of counterions and interaction between two similarly charged dielectric slabs: roles of charge discreteness and dielectric inhomogeneity.Phys. Rev. E2012,85, 061925..
Yuan, J.; Antila, H. S.; Luijten, E. Structure of polyelectrolyte brushes on polarizable substrates.Macromolecules2020,53, 2983−2990..
Seijo, M.; Pohl, M.; Ulrich, S.; Stoll, S. Dielectric discontinuity effects on the adsorption of a linear polyelectrolyte at the surface of a neutral nanoparticle.J. Chem. Phys.2009,131, 174704..
Yuan, J.; Antila, H. S.; Luijten, E. Dielectric effects on ion transport in polyelectrolyte brushes.ACS Macro. Lett.2019,8, 183−187..
Jiménez-Ángeles, F.; Ehlen, A.; Olvera de la Cruz, M. Surface polarization enhances ionic transport and correlations in electrolyte solutions nanoconfined by conductors.Faraday Discuss.2023,246, 576−591..
Sachar, H. S.; Chava, B. S.; Pial, T. H.; Das, S. All-atom molecular dynamics simulations of the temperature response of densely grafted polyelectrolyte brushes.Macromolecules2021,54, 6342−6354..
Nguyen, T. D.; Li, H.; Bagchi, D.; Solis, F. J.; Olvera de la Cruz, M. Incorporating surface polarization effects into large-scale coarse-grained molecular dynamics simulation.Comput. Phys. Commun.2019,241, 80−91..
Liang, J.; Yuan, J.; Luijten, E.; Xu, Z. Harmonic surface mapping algorithm for molecular dynamics simulations of particle systems with planar dielectric interfaces.J. Chem. Phys.2020,152, 134109..
Tergolina, V. B.; dos Santos, A. P. Effect of dielectric discontinuity on a spherical polyelectrolyte brush.J. Chem. Phys.2017,147, 114103..
Frydel, D. Polarizable poisson-boltzmann equation: the study of polarizability effects on the structure of a double layer.J. Chem. Phys.2011,134, 234704..
Nap, R.; Gong, P.; Szleifer, I. Weak polyelectrolytes tethered to surfaces: effect of geometry, acid-base equilibrium and electrical permittivity.J. Polym. Sci. B Polym. Phys.2006,44, 2638−2662..
Wu, J. Understanding the electric double-layer structure, capacitance, and charging dynamics.Chem. Rev.2022,122, 10821−10859..
Balzer, C.; Wang, Z. G. Electroresponse of weak polyelectrolyte brushes.Eur. Phys. J. E2023,46, 82..
Israels, R.; Leermakers, F. A. M.; Fleer, G. J.; Zhulina, E. B. Charged polymeric brushes: structure and scaling relations.Macromolecules1994,27, 3249−3261..
Wang, R.; Wang, Z. G. Inhomogeneous screening near the dielectric interface.J. Chem. Phys.2016,144, 134902..
Wang, R.; Wang, Z. G. Effects of image charges on double layer structure and forces.J. Chem Phys.2013,139, 124702..
Wu, J. Classical density functional theory for molecular systems. InVariational Methods in Molecular Modeling. Molecular Modeling and Simulation.; Wu, J., Ed.; Springer: Singapore, 2017 ; pp. 65–99..
Xu, X.; Cao, D.; Wu, J. Density functional theory for predicting polymeric forces against surface fouling.Soft Matt.2010,6, 4631..
Zhao, S.; Liu, Y.; Chen, X.; Lu, Y.; Liu, H.; Hu, Y. Unified framework of multiscale density functional theories and its recent applications. InMesoscale Modeling in Chemical Engineering Part II; Marin, G. B., Li, J., Eds.; Elsevier: London, 2015 ; Vol. 47, pp. 1–83..
Wu, J. Density functional theory for chemical engineering: from capillarity to soft materials.AIChE J.2006,52, 1169−1193..
Pryamitsyn, V. A.; Leermakers, F. A. M.; Fleer, G. J.; Zhulina, E. B. Theory of the collapse of the polyelectrolyte brush.Macromolecules1996,29, 8260−8270..
Borisov, O. V.; Birshtein, T. M.; Zhulina, E. B. Collapse of grafted polyelectrolyte layer.J. Physique II1991,1, 521−526..
von Goeler, F.; Muthukumar, M. Stretch-collapse transition of polyelectrolyte brushes in a poor solvent.J. Chem. Phys.1996,105, 11335−11346..
Faubel, J. L.; Patel, R. P.; Wei, W.; Curtis, J. E.; Brettmann, B. K. Giant hyaluronan polymer brushes display polyelectrolyte brush polymer physics behavior.ACS Macro Lett.2019,8, 1323−1327..
Jackson, J.D.Classical Electrodynamics, 3rdEd.; John Wiley& Sons, Inc.: New York, 1999 ..
Gray, P. R.; Hurst, P. J.; Lewis, S. H.; Meyer, R. G.Analysis and Design of Analog Integrated Circuits, 5thEd.; Wiley, 2009 ..
te Vrugt, M.; Löwen, H.; Wittkowski, R. Classical dynamical density functional theory: from fundamentals to applications.Adv. Phys.2020,69, 121−247..
Yu, Y.-X.; Wu, J. Structures of hard-sphere fluids from a modified fundamental-measure theory.J. Chem. Phys.2002,117, 10156−10164..
Rosenfeld, Y. Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing.Phys. Rev. Lett.1989,63, 980−983..
Jiang, J.; Liu, H.; Hu, Y.; Prausnitz, J. M. A molecular-thermodynamic model for polyelectrolyte solutions.J. Chem. Phys.1998,108, 780−784..
Jiang, J. W.; Blum, L.; Bernard, O.; Prausnitz, J. M. Thermodynamic properties and phase equilibria of charged hard sphere chain model for polyelectrolyte solutions.Mol. Phys.2001,99, 1121−1128..
Xu, X.; Qiu, Q.; Lu, C.; Zhao, S. Responsive properties of grafted polyanion chains: effects of dispersion interaction and salt.J. Chem. Eng. Data2020,65, 5708−5717..
Blum, L. Mean spherical model for asymmetric electrolytes.Mol. Phys.1975,30, 1529−1535..
Blum, L.; Hoeye, J. S. Mean spherical model for asymmetric electrolytes. 2. Thermodynamic properties and the pair correlation function.J. Phys. Chem.1977,81, 1311−1316..
Jiang, J.; Gillespie, D. Revisiting the charged shell model: a density functional theory for electrolytes.J. Chem. Theory Comput.2021,17, 2409−2416..
Muthukumar, M. inPhysics of Charged Macromolecules: Synthetic and Biological Systems; Cambridge University Press: New York, 2023 ..
Wang, R. Effects of self energy of the ions on the double layer structure and properties at the dielectric interface, California Institute of Technology, Pasadena, 2015 .
Zhang, X.Lecture Notes in Numerical Methods for Partial Differential Equations. Purdue University. https://www.math.purdue.edu/~zhan1966/teaching/615/615_2022S.html (accessed 2023-10-12).
Zhang, P.; Alsaifi, N. M.; Wu, J.; Wang, Z. G. Salting-out and salting-in of polyelectrolyte solutions: a liquid-state theory study.Macromolecules2016,49, 9720−9730..
Zhang, P.; Wang, Z. G. Supernatant phase in polyelectrolyte complex coacervation: cluster formation, binodal, and nucleation.Macromolecules2022,55, 3910−3923..
Pincus, P. Colloid stabilization with grafted polyelectrolytes.Macromolecules1991,24, 2912−2919..
0
Views
92
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution