Zhang, Y. C.; Huang, W. L.; Liu, Y. X. Automated identification of ordered phases for simulation studies of block copolymers. Chinese J. Polym. Sci. 2024, 42, 683–692
Yu-Chen Zhang, Wei-Ling Huang, Yi-Xin Liu. Automated Identification of Ordered Phases for Simulation Studies of Block Copolymers. [J]. Chinese Journal of Polymer Science 42(5):683-692(2024)
Zhang, Y. C.; Huang, W. L.; Liu, Y. X. Automated identification of ordered phases for simulation studies of block copolymers. Chinese J. Polym. Sci. 2024, 42, 683–692 DOI: 10.1007/s10118-024-3084-x.
Yu-Chen Zhang, Wei-Ling Huang, Yi-Xin Liu. Automated Identification of Ordered Phases for Simulation Studies of Block Copolymers. [J]. Chinese Journal of Polymer Science 42(5):683-692(2024) DOI: 10.1007/s10118-024-3084-x.
Automated Identification of Ordered Phases for Simulation Studies of Block Copolymers
This work leverages scattering theory of perfect crystals to accurately identify the symmetry of simulation results for unit cell studies of block copolymers. Its unique advantages involve low computational requirements
high scalability and online modifiability
thereby facilitating the development of automated research workflows for ordered phases in block copolymers.
Abstract
In unit cell simulations
identification of ordered phases in block copolymers (BCPs) is a tedious and time-consuming task
impeding the advancement of more streamlined and potentially automated research workflows. In this study
we propose a scattering-based automated identification strategy (SAIS) for characterization and identification of ordered phases of BCPs based on their computed scattering patterns. Our approach leverages the scattering theory of perfect crystals to efficiently compute the scattering patterns of periodic morphologies in a unit cell. In the first stage of the SAIS
phases are identified by comparing reflection conditions at a sequence of Miller indices. To confirm or refine the identification results of the first stage
the second stage of the SAIS introduces a tailored residual between the test phase and each of the known candidate phases. Furthermore
our strategy incorporates a variance-like criterion to distinguish background species
enabling its extension to multi-species BCP systems. It has been demonstrated that our strategy achieves exceptional accuracy and robustness while requiring minimal computational resources. Additionally
the approach allows for real-time expansion and improvement to the candidate phase library
facilitating the development of automated research workflows for designing specific ordered structures and discovering new ordered phases in BCPs.
关键词
Keywords
Block copolymerPhase identificationScattering function
references
Bates, F. S.; Fredrickson, G. H. Block copolymers—designer soft materials.Phys. Today1999, 52, 32−38..
Cummins, C.; Lundy, R.; Walsh, J. J.; Ponsinet, V.; Fleury, G.; Morris, M. A. Enabling future nanomanufacturing through block copolymer self-assembly: a review.Nano Today2020, 35, 100936..
Pester, C. W.; Liedel, C.; Ruppel, M.; Böker, A. Block copolymers in electric fields.Prog. Polym. Sci.2017, 64, 182−214..
Fan, X.; Zhao, Y.; Xu, W.; Li, L. Linear-dendritic block copolymer for drug and gene delivery.Mate. Sci. Eng. C2016, 62, 943−959..
Matsen, M. W.; Schick, M. Stable and unstable phases of a diblock copolymer melt.Phys. Rev. Lett.1994, 72, 2660−2663..
Dorfman, K. D. Frank-Kasper phases in block polymers.Macromolecules2021, 54, 10251−10270..
Chen, M.; Huang, Y.; Chen, C.; Chen, H. Accessing the Frank-Kasper σphase of block copolymer with small conformational asymmetry viaselective solvent solubilization in the micellar corona.Macromolecules2022, 55, 10812−10820..
Li, W.; Liu, Y. Simplicity in mean-field phase behavior of two-component miktoarm star copolymers.J. of Chem. Phys.2021, 154, 014903−014903..
Han, L.; Che, S. An overview of materials with triply periodic minimal surfaces and related geometry: from biological structures to self-assembled systems.Adv. Mater.2018, 30, 1705708..
Ha, S.; La, Y.; Kim, K. T. Polymer cubosomes: infinite cubic mazes and possibilities.Acc. of Chem. Res.2020, 53, 620−631..
Feng, X.; Burke, C. J.; Zhuo, M.; Guo, H.; Yang, K.; Reddy, A.; Prasad, I.; Ho, R.; Avgeropoulos, A.; Grason, G. M.; Thomas, E. L. Seeing mesoatomic distortions in softmatter crystals of a double-gyroid block copolymer.Nature2019, 575, 175−179..
Hamley, I. W. inDevelopments in block copolymer science and technology. Wiley, 2004 ..
Fredrickson, G. H. inThe Equilibrium Theory of Inhomogeneous Polymers. Oxford University Press, 2005 ..
Matsen, M. W. The standard Gaussian model for block copolymer melts.J. Phys. Condensed Matter2002, 14, R21..
Epps, T. H.; Cochran, E. W.; Hardy, C. M.; Bailey, T. S.; Waletzko, R. S.; Bates, F. S. Network phases in ABC triblock copolymers.Macromolecules2004, 37, 7085−7088..
Matsen, M. W. Effect ofArchitecture on the phase behavior of AB-type block copolymer melts.Macromolecules2012, 45, 2161−2165..
Lee, S.; Bluemle, M. J.; Bates, F. S. Discovery of a Frank-Kasper σphase in sphere-forming block copolymer melts.Science2010, 330, 349−353..
Jung, H. Y.; Park, M. J. Thermodynamics and phase behavior of acid-tethered block copolymers with ionic liquids.Soft Matter2016, 13, 250−257..
Schulze, M. W.; Lequieu, J.; Barbon, S. M.; Lewis, R. W.; Delaney, K. T.; Anastasaki, A.; Hawker, C. J.; Fredrickson, G. H.; Bates, C. M. Stability of the A15 phase in diblock copolymer melts.Proc. Nat. Acad. Sci. U.S.A.2019, 116, 13194−13199..
Xie, Q.; Qiang, Y.; Li, W. Regulate the stability of gyroids of ABC-type multiblock copolymers by controlling the packing frustration.ACS Macro Lett.2020, 9, 278−283..
Dong, Q.; Li, W. Effect of molecular asymmetry on the formation of asymmetric nanostructures in ABC-type block copolymers.Macromolecules2021, 54, 203−213..
Xie, Q.; Qiang, Y.; Li, W. Single gyroid self-assembled by linear BABAB pentablock copolymer.ACS Macro Lett.2022, 11, 205−209..
Arora, A.; Morse, D. C.; Bates, F. S.; Dorfman, K. D. Accelerating self-consistent field theory of block polymers in a variable unit cell.J. Chem. Phys.2017, 146, 244902..
Paradiso, S. P.; Delaney, K. T.; Fredrickson, G. H. Swarm intelligence platform for multiblock polymer inverse formulation design.ACS Macro Lett.2016, 5, 972−976..
Dong, Q.; Gong, X.; Yuan, K.; Jiang, Y.; Zhang, L.; Li, W. Inverse design of complex block copolymers for exotic self-assembled structures based on bayesian optimization.ACS Macro Lett.2023, 12, 401−407..
Cullity, B. D.; Stock, S. R.; Education, I.Elements of X-ray diffraction. Pearson India Education Services, 2015 ..
Li, T.; Senesi, A. J.; Lee, B. Small angle X-ray scattering for nanoparticle research.Chem. Rev.2016, 116, 11128−11180..
Giacovazzo, C.; Al, E.Fundamentals of crystallography. Oxford University Press, 2009 ..
Kittel, C.Introduction to solid state physics. Wiley, 2005.
Yager, K. G.; Zhang,Y.; Lu, F.; Gang, O. Periodic lattices of arbitrary nano-objects: modeling and applications for self-assembled systems.J. Appl. Crystallography2013, 47, 118−129..
Duhamel, P.; Vetterli, M. Fast fourier transforms: a tutorial review and a state of the art.Signal Processing1990, 19, 259−299..
Meuler, A. J.; Hillmyer, M. A.; Bates, F. S. Ordered network mesostructures in block polymer materials.Macromolecules2009, 42, 7221−7250..
Takenaka, M.; Wakada, T.; Akasaka, S.; Nishitsuji, S.; Saijo, K.; Shimizu, H.; Kim, M. I.; Hasegawa, H. Orthorhombic Fddd network in diblock copolymer melts.Macromolecules2007, 40, 4399−4402..
Tenneti, K. K.; Chen, X.; Li, C. Y.; Tu, Y.; Wan, X.; Zhou, Q.; Sics, I.; Hsiao, B. S. Perforated layer structures in liquid crystalline rod-coil block copolymers.J. Am. Chem. Soc.2005, 127, 15481−15490..
Xie, N.; Li, W.; Qiu, F.; Shi, A. σPhase formed in conformationally asymmetric AB-type block copolymers.ACS Macro Lett.2014, 3, 906−910..
Xiang, L.; Li, Q.; Li, C.; Yang, Q.; Xu, F.; Mai, Y. Block copolymer selfassembly directed synthesis of porous materials with ordered bicontinuous structures and their potential applications.Adv. Mater.2023, 35, 2207684..
Hammond, C.The basics of crystallography and diffraction.Oxford University Press, 2015 ..
Aroyo, M. I.; Kristallographie, I. U. F.International tables for crystallography. Volume A Space-group symmetry; Chichester, West Sussex Wiley, 2016 ..
Aoyagi, T. Deep learning model for predicting phase diagrams of block copolymers.Comput. Mater. Sci.2021, 188, 110224..
Aoyagi, T. High-throughput prediction of stress-strain curves of thermoplastic elastomer model block copolymers by combining hierarchical simulation and deep learning.MRS Adv.2021, 6, 32−36..
Dünweg, B.; Kremer, K. Molecular dynamics simulation of a polymer chain in solution.J. Chem. Phys.1993, 99, 6983−6997..
Scattering Function and Spinodal Transition of Linear and Nonlinear Block Copolymers Based on a Unified Molecular Model
Ordered Bicontinuous Network Structures Regulated by Orientational Interactions in a Rod-Coil Block Copolymer
Asymmetric Mesoporous Carbon Microparticles by 3D-Confined Self-Assembly of Block Copolymer/Homopolymer Blends and Selective Carbonization
Related Author
No data
Related Institution
Key Laboratory of Functional Polymer Materials of Ministry of Education; Institute of Polymer Chemistry, College of Chemistry, Nankai University
Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University
State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences