a.State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
b.Hainan Provincial Key Laboratory of Natural Rubber Processing, Agricultural Products Processing Research Institute of Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
zt-xie@scu.edu.cn (Z.T.X.)
wujinrong@scu.edu.cn (J.R.W.)
Scan for full text
Huang, S. Q.; Zhang, J. Q.; Zhu, Y.; Kong, L. M.; Liao, L. S.; Zhang, F. Q.; Xie, Z. T.; Wu, J. R. Revealing the structure-property difference of natural rubber prepared by different methods: protein and gel content are key factors. Chinese J. Polym. Sci. 2024, 42, 457–467
Shao-Qi Huang, Jun-Qi Zhang, Yong Zhu, et al. Revealing the Structure-Property Difference of Natural Rubber Prepared by Different Methods: Protein and Gel Content are Key Factors. [J]. Chinese Journal of Polymer Science 42(4):457-467(2024)
Huang, S. Q.; Zhang, J. Q.; Zhu, Y.; Kong, L. M.; Liao, L. S.; Zhang, F. Q.; Xie, Z. T.; Wu, J. R. Revealing the structure-property difference of natural rubber prepared by different methods: protein and gel content are key factors. Chinese J. Polym. Sci. 2024, 42, 457–467 DOI: 10.1007/s10118-024-3071-2.
Shao-Qi Huang, Jun-Qi Zhang, Yong Zhu, et al. Revealing the Structure-Property Difference of Natural Rubber Prepared by Different Methods: Protein and Gel Content are Key Factors. [J]. Chinese Journal of Polymer Science 42(4):457-467(2024) DOI: 10.1007/s10118-024-3071-2.
This study systematically compares and analyzes four representative natural rubber raw materials
which reveals that protein and gel content may be the key factors affecting NR performance. The protein and gel content in rubber can dissipate energy and promote the strain-induced crystallization behavior of rubber
contributing to excellent comprehensive performance.
Natural rubber (NR) is widely used in various fields including aerospace
military industry and transportation due to its superior elasticity and comprehensive mechanical properties. Nonetheless
the commercial NR prepared by different methods usually exhibits different mechanical properties
primarily due to variations in processing conditions during the conversion from latex to bulk rubber material. Consequently
this poses challenges in scientific research and industrial production of NR. In order to assess the properties of various commercially available NR and identify key structural and compositional components
this study systematically compares and analyzes four representative NR raw materials: air dried sheet (ADS)
ribbed smoked sheets (RSS)
constant viscidity NR (CV)
and whole field latex rubber (WF). The investigation focuses on evaluating their static mechanical behavior
SIC behavior
wear resistance
and fatigue resistance. The findings indicate that protein and gel content exhibit a crucial influence on the NR properties. These constituents contribute to the formation of a high-crosslinking density region
generating a heterogeneous network structure within the rubber. This structure amplifies strains during deformation
leading to earlier and stronger strain-induced crystallization (SIC). Among the four commercial NR brands
RSS demonstrates superior overall mechanical and dynamic properties owing to its high protein and gel content. This study serves as a valuable reference for comprehending the differences in properties among various commercial NR
thereby offering guidance for the actual processing and selection of NR.
Natural rubberProcessing methodProteinGel contentProperty
Chaikumpollert, O.; Yamamoto, Y.; Suchiva, K.; Nghia, P. T.; Kawahara, S. Preparation and characterization of protein-free natural rubber.Polym. Adv. Technol.2012, 23, 825−828..
Tanaka, Y. Structural characterization of natural polyisoprenes: solve the mystery of natural rubber based on structural study.Rubber Chem. Technol.2001, 74, 355−375..
Yu, H.; Wang, Q.; Li, J.; Liu, Y.; He, D.; Gao, X.; Yu, H. Effect of lipids on the stability of natural rubber latex and tensile properties of its films.J. Rubber. Res.2017, 20, 213−222..
Hassanabadi, M.; Najafi, M.; Nikazar, S.; Garakani, S. S.; Motlagh, G. H.; Kiersnowski, A. Impact of placement of aminopropyl triethoxy silane and tetraethoxy silicate on ssbr chains: analysis of rolling resistance, wet grip, and abrasion resistance.Adv. Polym. Technol.2022, 2022, 1566042..
Liu, H.; Shen, Q.; Zhang, L.; Gu, S.; Peng, Y.; Wu, Q.; Xiong, H.; Zhang, H.; Zhao, L.; Huang, G.; Wu, J. A fast-healing and high-performance metallosupramolecular elastomer based on pyridine-Cu coordination.Sci. China Mater.2022, 65, 1943−1951..
Zhang, L.; Xiong, H.; Wu, Q.; Peng, Y.; Zhu, Y.; Wang, H.; Yang, Y.; Liu, X.; Huang, G.; Wu, J. Constructing hydrophobic protection for ionic interactions toward water, acid, and base-resistant self-healing elastomers and electronic devices.Sci. China Mater.2021, 64, 1780−1790..
Qi, Y.; Liu, Z.; Liu, S.; Cui, L.; Dai, Q.; He, J.; Dong, W.; Bai, C. Synthesis of 1,3-butadiene and its 2-substituted monomers for synthetic rubbers.Catalysts2019, 9, 97..
Toki, S.; Che, J.; Rong, L.; Hsiao, B. S.; Amnuaypornsri, S.; Nimpaiboon, A.; Sakdapipanich, J. Entanglements and networks to strain-induced crystallization and stress-strain relations in natural rubber and synthetic polyisoprene at various temperatures.Macromolecules2013, 46, 5238−5248..
Nun-Anan, P.; Suchat, S.; Mahathaninwong, N.; Chueangchayaphan, N.; Karrila, S.; Limhengha, S. Study of aquilaria crassna wood as an antifungal additive to improve the properties of natural rubber as air-dried sheets.Polymers2021, 13, 4178..
Thuong, N. T.; Yamamoto, Y.; Nghia, P. T.; Kawahara, S. Analysis of damage in commercial natural rubber through NMR spectroscopy.Polym. Degrad. Stabil.2016, 123, 155−161..
Salomez, M.; Subileau, M.; Intapun, J.; Bonfils, F.; Sainte-Beuve, J.; Vaysse, L.; Dubreucq, E. Micro-organisms in latex and natural rubber coagula of Hevea brasiliensisand their impact on rubber composition, structure and properties.J. Appl. Microbiol.2014, 117, 921−929..
Salomez, M.; Subileau, M.; Vallaeys, T.; Santoni, S.; Bonfils, F.; Sainte-Beuve, J.; Intapun, J.; Granet, F.; Vaysse, L.; Dubreucq, E. Microbial communities in natural rubber coagula during maturation: impacts on technological properties of dry natural rubber.J. Appl. Microbiol.2018, 124, 444−456..
Yang, L.; Zhong, J. P.; Wang, Z. F.; Li, L. F.; Chen, J.; Li, S. D. Vulcanization characteristics of natural rubber coagulated by microorganisms.Rubber Chem. Technol.2018, 91, 64−78..
Chen, G.; Wang, B.; Lin, H.; Peng, W.; Zhang, F.; Li, G.; Ke, D.; Liao, J.; Liao, L. Effect of nonisoprene degradation and naturally occurring network during maturation on the properties of natural rubber.Polymers2022, 14, 2180..
Dafader, N. C.; Haque, M. E.; Jolly, Y. N.; Akhtar, F.; Ahmad, M. U. Dependence of physicochemical properties of radiation vulcanized natural rubber latex film on maturation time.Polym-plast. Technol.2003, 42, 217−227..
Chen, M.; Wang, Y. Z.; Lu, G.; Wang, X. P. Effects of different drying methods on the microstructure and thermal oxidative aging resistance of natural rubber.J. Appl. Polym. Sci.2012, 126, 1808−1813..
Tham, T. C.; Ng, M. X.; Ong, S. P.; Hii, C. L.; Law, C. L. Application of microwave-assisted drying on specific energy consumption, effective diffusion coefficient and topological changes of crumb natural rubber ( cis-1,4-polyisoprene).Chem. Eng. Process. Process Intensif.2018, 128, 19−35..
Sakdapipanich, J.; Klinklai, W.; Kawahara, S.; Tanaka, Y.; Yunyongwattanakorn, J. Effect of non-rubber components on storage hardening and gel formation of natural rubber during accelerated storage under various conditions.Rubber Chem. Technol.2003, 76, 1228−1240..
Nimpaiboon, A.; Sriring, M.; Sakdapipanich, J. T. Molecular structure and storage hardening of natural rubber: insight into the reactions between hydroxylamine and phospholipids linked to natural rubber molecule.J. Appl. Polym.2016, 133, 43753..
Chollakup, R.; Suwanruji, P.; Tantatherdtam, R.; Smitthipong, W. New approach on structure-property relationships of stabilized natural rubbers.J. Polym. Res.2019, 26, 1−11..
Dixit, M.; Taniguchi, T. Substantial effect of terminal groups in cis-polyisoprene: a multiscale molecular dynamics simulation study.Macromolecules2022, 55, 9650−9662..
Kawahara, S. Discovery of island-nanomatrix structure in natural rubber.Polym. J.2023, 55, 1007−1021..
Chaikumpollert, O.; Yamamoto, Y.; Suchiva, K.; Kawahara, S. Protein-free natural rubber.Colloid. Polym. Sci.2011, 290, 331−338..
Liu, H.; Huang, G.-S.; Wei, L.-Y.; Zeng, J.; Fu, X.; Huang, C.; Wu, J. R. Inhomogeneous natural network promoting strain-induced crystallization: a mesoscale model of natural rubber.Chinese. J. Polym. Sci.2019, 37, 1142−1151..
Zhou, Y.; Kosugi, K.; Yamamoto, Y.; Kawahara, S. Effect of non-rubber components on the mechanical properties of natural rubber.Polym. Adv. Technol.2017, 28, 159−165..
Wei, Y. C.; Liu, G. X.; Zhang, H. F.; Zhao, F.; Luo, M. C.; Liao, S. Non-rubber components tuning mechanical properties of natural rubber from vulcanization kinetics.Polymer2019, 183, 121911..
Fu, X.; Huang, C.; Zhu, Y.; Huang, G.; Wu, J. Characterizing the naturally occurring sacrificial bond within natural rubber.Polymer2019, 161, 41−48..
Aik-Hwee, E.; Tanaka, Y.; Sakdapipanich, J. T.; Isono, Y.; Kawahara, S. Effect of gel on the green strength of natural rubber.Rubber Chem. Technol.2002, 75, 739−746..
Bhowmick, A. K.; Cho, J.; MacArthur, A.; McIntyre, D. Influence of gel and molecular weight on the properties of natural rubber.Polymer1986, 27, 1889−1894..
Oliveira Reis, G.; Gibaud, T.; Saint-Michel, B.; Manneville, S.; Leocmach, M.; Vaysse, L.; Bonfils, F.; Sanchez, C.; Menut, P. Irreversible hardening of a colloidal gel under shear: the smart response of natural rubber latex gels.J. Colloid Interface Sci.2019, 539, 287−296..
Nimpaiboon, A.; Amnuaypornsri, S.; Sakdapipanich, J. Influence of gel content on the physical properties of unfilled and carbon black filled natural rubber vulcanizates.Polym. Test.2013, 32, 1135−1144..
Nun-anan, P.; Wisunthorn, S.; Pichaiyut, S.; Vennemann, N.; Kummerlöwe, C.; Nakason, C. Influence of alkaline treatment and acetone extraction of natural rubber matrix on properties of carbon black filled natural rubber vulcanizates.Polym. Test.2020, 89, 106623..
Qu, W.; Zhu, Y.; Huang, G.; Huang, C.; Luo, M. C.; Zheng, J. Study of molecular weight and chain branching architectures of natural rubber.J. Appl. Polym. Sci.2016, 133, 43975..
Razavi-Nouri, M.; Sabet, A.; Mohebbi, M. The gel content effect on rheological and physical properties of cured acrylonitrile-butadiene rubber/poly(ethylene- co-vinyl acetate)/organo-montmorillonite nanocomposites.Iran. Polym. J.2021, 30, 965−974..
Tanaka, Y.; Sakdapipanich, J. T.; Tarachiwin, L. Gel formation in natural rubber latex: 2. Effect of magnesium ion.Rubber Chem. Technol.2003, 76, 1185−1193..
Xu, Z.; Song, Y.; Zheng, Q. Payne effect of carbon black filled natural rubber compounds and their carbon black gels.Polymer2019, 185, 121953..
Rolere, S.; Bottier, C.; Vaysse, L.; Sainte-Beuve, J.; Bonfils, F. Characterisation of macrogel composition from industrial natural rubber samples: influence of proteins on the macrogel crosslink density.Express Polym. Lett.2016, 10, 408−419..
Narueporn, P.; Tadashi, I.; Jitladda, S. A model study of the influence of the natural rubber (nr)- endogenous gel fraction on the rheological performance of nr using synthetic polyisoprene rubber (IR) blends with different ratios of gel.ACS Appl. Polym. Mater.2022, 4, 7061−7069..
Li, Z. X.; Kong, Y. R.; Chen, X. F.; Huang, Y. J.; Lv, Y. D.; Li, G. X. High-temperature thermo-oxidative aging of vulcanized natural rubber nanocomposites: evolution of microstructure and mechanical properties.Chinese J. Polym. Sci.2023, 41, 1287−1297..
Zhang, Z.; Sun, J.; Lai, Y.; Wang, Y.; Liu, X.; Shi, S.; Chen, X. Effects of thermal aging on uniaxial ratcheting behavior of vulcanised natural rubber.Polym. Test.2018, 70, 102−110..
Amerik, A. Y.; Martirosyan, Y. T.; Martirosyan, L. Y.; Goldberg, V. M.; Uteulin, K. R.; Varfolomeev, S. D. Molecular genetic analysis of natural rubber biosynthesis.Russ. J. Plant Physiol.2021, 68, 31−45..
Yamamoto, Y.; Binti Norulhuda, S. N.; Nghia, P. T.; Kawahara, S. Thermal degradation of deproteinized natural rubber.Polym. Degrad. Stabil.2018, 156, 144−150..
Akahori, Y.; Kawahara, S. Effect of water on the accelerated sulfur vulcanization of natural rubber.Polym. Test.2023, 123, 108030..
Ran, S.; Fang, D.; Zong, X.; Hsiao, B. S.; Chu, B.; Cunniff, P. M. Structural changes during deformation of Kevlar fibers viaon-line synchrotron SAXS/WAXD techniques.Polymer2001, 42, 1601−1612..
Shibayama, M.; Kurokawa, H.; Nomura, S.; Muthukumar, M.; Stein, R. S.; Roy, S. Small-angle neutron scattering from poly(vinyl alcohol)-borate gels.Polymer1992, 33, 2883−2890..
Toki, S.; Burger, C.; Hsiao, B. S.; Amnuaypornsri, S.; Sakdapipanich, J.; Tanaka, Y. Multi-scaled microstructures in natural rubber characterized by synchrotron X-ray scattering and optical microscopy.J. Polym. Sci.2008, 46, 2456−2464..
Fu, X.; Huang, G.; Xie, Z.; Xing, W. New insights into reinforcement mechanism of nanoclay-filled isoprene rubber during uniaxial deformation by in situsynchrotron X-ray diffraction.RSC Adv.2015, 5, 25171−25182..
Qu, L.; Huang, G.; Liu, Z.; Zhang, P.; Weng, G.; Nie, Y. Remarkable reinforcement of natural rubber by deformation-induced crystallization in the presence of organophilic montmorillonite.Acta Mater.2009, 57, 5053−5060..
Wu, J.; Schultz, J. M.; Yeh, F.; Hsiao, B. S.; Chu, B. in-situ simultaneous synchrotron small- and wide-angle X-ray scattering measurement of poly(vinylidene fluoride) fibers under deformation.Macromolecules2000, 33, 1765−1777..
Gopesh, T.; Friend, J. Facile analytical extraction of the hyperelastic constants for the two-parameter mooney-rivlin model from experiments on soft polymers.Soft Robot.2021, 8, 365−370..
Howse, S.; Porter, C.; Mengistu, T.; Pazur, R. J. Experimental determination of the quantity and distribution of chemical crosslinks in unaged and aged natural rubber, part 1: peroxide vulcanization.Polym. Test.2018, 70, 263−274..
Kumar, A.; Dalmiya, M. S.; Goswami, M.; Bansal, V.; Goyal, S.; Nair, S.; Hossain, S. J.; Chattopadhyay, S. Entangled network influenced by carbonblack in solution Sbr vulcanizates revealed by theory and experiment.Rubber Chem. Technol.2021, 94, 324−338..
Hamza, S. S.; El-sabbagh, S.; Shokr, F. Elastic behavior of NR/IIR rubber blend loaded with different compatibilizers. Int.J. Polym. Mater. Polym. Biomater.2008, 57, 203−215..
Gent, A. N. Crystallization in natural rubber. IV. Temperature dependence.J. Polym. Sci.1955, 18, 321−334..
Kelsey, R. H.; Dillon, J. H. Rheological properties of natural and synthetic rubbers.J. Appl. Phys.1944, 15, 352−359..
McMahan, C.; Kostyal, D.; Lhamo, D.; Cornish, K. Protein influences on guayule and Hevea natural rubber sol and gel.J. Appl. Polym. Sci.2015, 132, 42051..
Promhuad, K.; Smitthipong, W. The effect of hydroxylamine sulfate on the storage hardening of natural rubber.IOP Conf. Ser. Mater. Sci. Eng.2020, 773, 012012..
Nishi, T. Rubber wear mechanism discussion based on the relationship between the wear resistance and the tear resistance with consideration of the strain rate effect.Wear 2019 ,426−427, 37−48..
Zhang, J.; Huang, C.; Zhu, Y.; Huang, G.; Wu, J. Toughening polyisoprene rubber with sacrificial bonds: the interplay between molecular mobility, energy dissipation and strain-induced crystallization.Polymer2021, 231, 124114..
Kawahara, S.; Kakubo, T.; Nishiyama, N.; Tanaka, Y.; Isono, Y.; Sakdapipanich, J. T. Crystallization behavior and strength of natural rubber: skim rubber, deproteinized natural rubber, and pale crepe.J. Appl. Polym. Sci.2000, 78, 1510−1516..
Kawahara, S.; Ruangdech, J.; Isono, Y.; Hikosaka, M.; Tanaka, Y. Effects of nonrubber components on the crystallization behavior of natural rubber.J. Macromol. Sci. B Phys.2007, 42, 761−771..
Bhattacharya, M.; Bhowmick, A. K. Analysis of wear characteristics of natural rubber nanocomposites.Wear2010, 269, 152−166..
Chen, X.; Wang, M.; Kong, Y.; Li, Z.; Wang, R.; Huang, Y.; Li, G. Effect of non-rubber components on the wear behavior of vulcanized natural rubber nanocomposites.Mater. Today Commun.2023, 34, 105372..
Han, J.; Zhang, Y.; Wu, C.; Xie, L.; Ma, Y. Wet sliding abrasion of natural rubber composites filled with carbon black at different applied loads.J. Macromol. Sci. B Phys.2015, 54, 401−410..
Liu, X.; Shangguan, W.-B.; Zhao, X. Probabilistic fatigue life prediction model of natural rubber components based on the expanded sample data.Int. J. Fatigue2022, 163, 107034..
Tunnicliffe, L. B. Fatigue crack growth behavior of carbon black-reinforced natural rubber 66.Rubber Chem. Technol.2021, 94, 494−514..
Affatato, S.; Bracco, P.; Costa, L.; Villa, T.; Quaglini, V.; Toni, A. In vitro wear performance of standard, crosslinked, and vitamin-E-blended UHMWPE.J. Biomed. Mater. Res. Part A2011, 100, 554−560..
Okui, M.; Kojima, A.; Hisamichi, I.; Kuriyama, S.; Kojima, T.; Tsuji, T.; Nakamura, T. Prolonging rubber fatigue life using hysteresis of strain-induced crystallization of natural rubber.Polym. Test.2023, 117, 107800..
0
Views
41
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution