a.State Key Laboratory for Modification of Chemical Fibers & Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
b.State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510630, China
kongweiqing@dhu.edu.cn
Scan for full text
Shen, Z. W.; Hu, S. F.; Zeng, C.; Kong, W. Q.; Zhu, M. F. A low cost, green sustainable and biodegradable biomass-based fluorine-free water and oil repellent. Chinese J. Polym. Sci. 2024, 42, 480–491
Zhi-Wei Shen, Shu-Feng Hu, Chen Zeng, et al. A Low Cost, Green Sustainable and Biodegradable Biomass-based Fluorine-free Water and Oil Repellent. [J]. Chinese Journal of Polymer Science 42(4):480-491(2024)
Shen, Z. W.; Hu, S. F.; Zeng, C.; Kong, W. Q.; Zhu, M. F. A low cost, green sustainable and biodegradable biomass-based fluorine-free water and oil repellent. Chinese J. Polym. Sci. 2024, 42, 480–491 DOI: 10.1007/s10118-024-3067-y.
Zhi-Wei Shen, Shu-Feng Hu, Chen Zeng, et al. A Low Cost, Green Sustainable and Biodegradable Biomass-based Fluorine-free Water and Oil Repellent. [J]. Chinese Journal of Polymer Science 42(4):480-491(2024) DOI: 10.1007/s10118-024-3067-y.
Low cost
green sustainable and biodegradable biomass-based fluorine-free water and oil repellent. The prepared product did not exhibit any leakage after being soaked in hot water and hot oil at 95±5℃ for 30 minutes.
With the global ban on plastics intensifying
the substitution of plastic with paper has garnered increasing attention. However
the inadequate water and oil repellency of pulp molding hinders its practical applications. Currently
the common method to enhance the oil and water repellency of pulp molding is by adding fluorinated water and oil repellents. Nevertheless
fluorinated compounds are environmentally and physiologically harmful. Therefore
the development of fluorine-free
water and oil repellent alternatives is crucial. In this study
chitosan and stearic acid were utilized as the first and second layers of the oil and water repellent coatings
respectively. The coated samples exhibited favorable water repellency
with a water contact angle of 116.4°
and excellent oil repellency
achieving a 12/12 rating on the kit scale. Importantly
the samples did not exhibit any leakage after being soaked in hot water and hot oil at 95±5 °C for 30 min
demonstrating remarkable performance as a barrier against hot water and oil. Moreover
the coated samples displayed outstanding mechanical properties
thermal stability
biodegradability
and recyclability. The approach presented in this study is simple
cost-effective
environmentally friendly
and represents a promising technique for producing fluoride-free
oil- and water-resistant pulp molding products.
BiomassFluoride-freeOil-and water-resistantPlastic free
Liu, C.; Luan, P.; Li, Q.; Cheng, Z.; Sun, X.; Cao, D.; Zhu, H. Biodegradable, hygienic, and compostable tableware from hybrid sugarcane and bamboo fibers as plastic alternative.Matter2020, 3, 2066−2079..
Rastogi, V. K.; Samyn, P. Bio-based coatings for paper applications.Coatings2015, 5, 887−930..
Deshwal, G. K.; Panjagari, N. R.; Alam, T. An overview of paperand paper based food packaging materials: health safety and environmental concerns.J. Food. Sci. Tech.2019, 56, 4391−4403..
Chen, C. T.; Huang, Y.; Zhu, C. L.; Nie, Y.; Yang, J. Z.; Sun, D. P.; Sythesis and characterization of hydroxypropyl cellulose from bacterial cellulose.Chinese J. Polym. Sci. 2014, 32, 439–448..
Asua, J. M.,in Polymeric dispersions: principles and applications. Springer Science& Business Media, 2012 , 335..
Tian, S.; Jiang, J.; Zhu, P.; Yu, Z.; Oguzlu, H.; Balldelli, A.; Wu, J.; Zhu, J.; Sun, X.; Saddler, J.; Jiang, F. Fabrication of a transparent and biodegradable cellulose film from kraft pulp viacold alkaline swelling and mechanical blending.ACS Sustainable Chem. Eng.2022, 10, 10560−10569..
Wong, T. S.; Kang, S. H.; Tang, S. K.; Smythe, E. J.; Hatton, B. D.; Grinthal, A.; Aizenberg, J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity.Nature2011, 477, 443−447..
Ham-Pichavant, F.; Sèbe, G.; Pardon, P.; Coma, V. Fat resistance properties of chitosan-based paper packaging for food applications.Carbohyd. Polym.2005, 61, 259−265..
Li, Z.; Rabnawaz, M. Oil-and water-resistant coatings for porous cellulosic substrates.ACS Appu. Polym. Mater.2018, 1, 103−111..
Lindh, H.; Olsson, A.; Williams, H. Consumer perceptions of food packaging: contributing to or counteracting environmentally sustainable development.Packag. Technol. Sci.2016, 29, 3−23..
Adams, J., Paperboard laminate for food packaging applications. Google Patents: 2005 .
Geyer, R.; Jambeck, J. R.; Law, K. L. Production, use, and fate of all plastics ever made.Sci. Adv.2017, 3, e1700782..
Rabnawaz, M.; Wyman, I.; Auras, R.; Cheng, S. A roadmap towards green packaging: the current status and future outlook for polyesters in the packaging industry.Green Chem.2017, 19, 4737−4753..
Foltynowicz, Z. Polymer packaging materials--friend or foe of the Circular Economy.Polimery2020, 65, 3−7..
Kotthoff, M.; Müller, J.; Jürling, H.; Schlummer, M.; Fiedler, D. Perfluoroalkyl and polyfluoroalkyl substances in consumer products.Environ. Sci. Pollut. R2015, 22, 14546−14559..
Dassuncao, C.; Hu, X. C.; Nielsen, F.; Weihe, P.; Grandjean, P.; Sunderland, E. M. Shifting global exposures to poly- and perfluoroalkyl substances (PFASs) evident in longitudinal birth cohorts from a seafood-consuming population.Environ. Sci. Tech.2018, 52, 3738−3747..
Jing, X.; Li, X.; Jiang, Y.; Lou, J.; Liu, Z.; Ding, Q.; Han, W. Degradable collagen/sodium alginate/polyvinyl butyral high barrier coating with water/oil-resistant in a facile and effective approach.Carbohyd. Polym.2022, 278, 118962..
Kansal, D.; Hamdani, S. S.; Ping, R.; Sirinakbumrung, N.; Rabnawaz, M. Food-safe chitosan-zein dual-layer coating for water- and oil-repellent paper substrates.ACS Sustainable Chem. Eng.2020, 8, 6887−6897..
Jin, K.; Tang, Y.; Liu, J.; Wang, J.; Ye, C. Nanofibrillated cellulose as coating agent for food packaging paper.Inter. J. Biolog. Macromol.2021, 168, 331−338..
Jiang, F.; Kondo, T.; Hsieh, Y. L. Rice straw cellulose nanofibrils viaaqueous counter collision and differential centrifugation and their self-assembled structures.ACS Sustainable Chem. Eng.2016, 4, 1697−1706..
Huang, S.; Meng, Y.; Li, H.; Zeng, X. Bio-based fluorine-free branched polyurethane@organosilicon water-repellent agent for cotton fabric.J. Appl. Polym. Sci.2023, 31, 11..
Sheng, J.; Li, J.; Zhao, L. Fabrication of grease resistant paper with non-fluorinated chemicals for food packaging.Cellulose.2019, 26, 6291−6302..
Zhu, R. F.; Lv, W. Z.; Sun, C.; Qin, C. R.; Zhang, D.; Long, Z. A facile strategy to fabricate high-barrier, water- and oil-repellent paper with carboxymethyl cellulose/collagen fiber/modified polyvinyl alcohol.Carbohyd. Polym.2023, 314, 120933..
Kopacic, S.; Walzl, A.; Zankel, A.; Leitner, E.; Bauer, W. Alginate and chitosan as a functional barrier for paper-based packaging materials.Coatings2018, 8, 235..
Yu, J.; Wang, D.; Geetha, N.; Khawar, K. M.; Jogaiah, S.; Mujtaba, M. Current trends and challenges in the synthesis and applications of chitosan-based nanocomposites for plants: a review.Carbohyd. Polym.2021, 261, 117904..
Morin-Crini, N.; Lichtfouse, E.; Torri, G.; Crini, G. Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry.Environ. Chem. Lett.2019, 17, 1667−1692..
Liu, J.; Cui, T.; Xu, X.; Du, Y.; Wang, L.; Chen, S.; Pang, J. Robust alcohol soluble polyurethane/chitosan/silk sericin (APU/CS/SS) nanofiber scaffolds toward artificial skin extracellular matrices viamicrofluidic blow-spinning.Adv. Fiber Mater.2023, 5, 349−361..
Li, Y.; Wei, C.; Jiang, Y.; Cheng, R.; Zhang, Y.; Ning, C.; Dong, K.; Wang, Z. L. Continuous preparation of chitosan-based self-powered sensing fibers recycled from wasted materials for smart home applications.Adv. Fiber Mater.2022, 4, 1584−1594..
Qi, Q. L.; Li, Q.; Lu, J. W.; Guo, Z. X.; Yu, J. Preparation and characterization of soluble eggshell membrane protein/chitosan blend films.Chinese J. Polym. Sci.2009, 27, 387−392..
Ghasemzadeh, H.; Sheikhahmadi, M.; Nasrollah, F. Full polysaccharide crosslinked-chitosan and silver nano composites, for use as an antibacterial membrane.Chinese J. Polym. Sci.2016, 34, 949−964..
Li, Z.; Rabnawaz, M. Oil- and water-resistant coatings for porous cellulosic substrates.ACS Appl. Polym. Mater.2019, 1, 103−111..
Li, Z.; Rabnawaz, M.; Sarwar, M. G.; Khan, B.; Krishna Nair, A.; Sirinakbumrung, N.; Kamdem, D. P. A closed-loop and sustainable approach for the fabrication of plastic-free oil- and water-resistant paper products.Green Chem.2019, 21, 5691−5700..
Nair, A.; Kansal, D.; Khan, A.; Rabnawaz, M. Oil- and water-resistant paper substrate using blends of chitosan-graft-polydimethylsiloxane and poly(vinyl alcohol).J. Appl. Polym. Sci.2021, 138, 50494..
Ralphs, K.; Collins, G.; Manyar, H.; James, S. L.; Hardacre, C. Selective hydrogenation of stearic acid using mechanochemically prepared titania-supported Pt and Pt-Re bimetallic catalysts.ACS Sustainable Chem. Eng.2022, 10, 6934−6941..
Gomari, K. R.; Denoyel, R.; Hamouda, A. Wettability of calcite and mica modified by different long-chain fatty acids (C18 acids).J. Colloid Interf. Sci.2006, 297, 470−479..
Cao, Z. F.; Lu, F.; Qiu, P.; Yang, F.; Liu, G.; Wang, S.; Zhong, H. Formation of a hydrophobic and corrosion resistant coating on manganese surface viastearic acid and oleic acid diethanolamide.Coll. Surf. A: Physicochem. Eng. Aspects2018, 555, 372−380..
Li, Y.; Weng, W. Surface modification of hydroxyapatite by stearic acid: characterization and in vitrobehaviors.J. Mater. Sci.: Mater. M2008, 19, 19−25..
Ahmed, S.; Ikram, S. Chitosan&its derivatives: a review in recent innovations.Inter. J. Pharmaceutical Sci. R2015, 6, 14−30..
Zhu, W.; Wu, Y.; Zhang, Y. Synthesis and characterisation of superhydrophobic CNC/ZnO nanocomposites by using stearic acid.Micro Nano Lett.2019, 14, 1317−1321..
Stories, S. Starbucks and closed loop partners to develop recyclable, compostable cup solution.Starbucks Stories 2018 ..
Samuel, B.; Zhao, H.; Law, K. Y. Study of wetting and adhesion interactions between water and various polymer and superhydrophobic surfaces.J. Phys. Chem. C.2011, 115, 14852−14861..
Li, J.; Du, Y. M.; Yao, P. J.; Wei, Y. A. Prediction and control of depolymerization of chitosan by sonolysis and degradation kinetics.Acta Polymererica Sinica(in Chinese)2007, 401−406..
Liu, Z.; Gao, Y.; Jin, H.; Yu, S. Study on natural cellulose crystallinity determinated by the technology of XRD peak separation.China Measur. Test2015, 41, 38..
Sharif, R.; Mohsin, M.; Ramzan, N.; Ahmad, S. W.; Qutab, H. G. Synthesis and application of fluorine-free environment-friendly stearic acid-based oil and water repellent for cotton fabric.J. Nat. Fibers2022, 19, 1632−1647..
Cardenas, G.; Miranda, S. P. FTIR and TGA studies of chitosan composite films.J. Chil. Chem. Soc.2004, 49, 291−295..
Liu, H.; Wei, Z.; Hu, M.; Deng, Y.; Tong, Z.; Wang, C. Fabrication of degradable polymer microspheres viapH-responsive chitosan-based Pickering emulsion photopolymerization.RSC Adv.2014, 4, 29344−29351..
Zhang, W.; Xiao, H.; Qian, L. Enhanced water vapour barrier and grease resistance of paper bilayer-coated with chitosan and beeswax.Carbohyd. Polym.2014, 101, 401−406..
Brodnjak, U. V. Influence of ultrasonic treatment on properties of bio-based coated paper.Prog. Org. Coat.2017, 103, 93−100..
Samyn, P.; Deconinck, M.; Schoukens, G.; Stanssens, D.; Vonck, L.; Van den Abbeele, H. Modifications of paper and paperboard surfaces with a nanostructured polymer coating.Prog. Org. Coat.2010, 69, 442−454..
Aguilar-Rivera, N. Emerging technology for sustainable production of bleached pulp from recovered cardboard.Clean Technol. Envir.2021, 23, 2575−2588..
0
Views
41
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution