a.School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
b.College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
c.Shanwei Branch of Advanced Energy Science and Technology Guangdong Laboratory, Shanwei 516600, China
songyiliao@gdut.edu.cn (S.Y.L.)
ygmin@gdut.edu.cn (Y.G.M.)
Scan for full text
Liu, C. S.; Hu, J. Q.; Mao, T. T.; Liao, S. Y.; Feng, R. M.; Liu, Y. D.; Min, Y. G. Copper-coated porous polyimide as ultralight and safe current collectors for advanced LIBs. Chinese J. Polym. Sci. 2024, 42, 521–531
Cun-Sheng Liu, Jun-Qi Hu, Ting-Ting Mao, et al. Copper-coated Porous Polyimide as Ultralight and Safe Current Collectors for Advanced LIBs. [J]. Chinese Journal of Polymer Science 42(4):521-531(2024)
Liu, C. S.; Hu, J. Q.; Mao, T. T.; Liao, S. Y.; Feng, R. M.; Liu, Y. D.; Min, Y. G. Copper-coated porous polyimide as ultralight and safe current collectors for advanced LIBs. Chinese J. Polym. Sci. 2024, 42, 521–531 DOI: 10.1007/s10118-023-3062-8.
Cun-Sheng Liu, Jun-Qi Hu, Ting-Ting Mao, et al. Copper-coated Porous Polyimide as Ultralight and Safe Current Collectors for Advanced LIBs. [J]. Chinese Journal of Polymer Science 42(4):521-531(2024) DOI: 10.1007/s10118-023-3062-8.
A novel Cu@porous polyimide anode current collector (Cu@PPI for short) was fabricated by laser hole making/vacuum deposition. Benefiting from the porous structure
electrons can be efficiently transported on Cu@PPI. Compared with commercial copper foil
Cu@PPI has lighter weight
higher safety and excellent electrochemical performance
which indicates a great increase in battery energy density.
Metallic copper is widely used as current collector (CC) for graphite anode of lithium-ion batteries (LIBs) due to its high electrical conductivity and electrochemical stability. However
the large volume density of commercial copper foil (~8.9 g·cm
−3
) limits the increase of energy density of battery. Here
copper-coated porous polyimide (Cu@PPI) was prepared by vacuum evaporation as collector for the graphite anode. The sandwich structure connects the copper metal on both sides of the collector with excellent electrical conductivity. Compared to commercial Cu foil
Cu@PPI has lighter mass (≤3.9 mg for disc of 12 mm diameter versus 9.9 mg of ~10 μm Cu foil) and lower volume density (≤3.3 g·cm
−3
). In addition
the porous structure allows of better adhesion of reactive substances and electrochemical properties than pure Cu foils. It is estimated that the energy density of Cu@PPI should be much higher than that of Cu foil. This strategy should be applicable for other current collectors.
Copper-coatedVacuum evaporationPorous polyimide (PPI)Current collector (CC)LIBs
Huang, X. W.; Liao, S. Y.; Liu, Y. D.; Rao, Q. S.; Peng, X. K.; Min, Y. G. Design, fabrication and application of PEO/CMC-Li@PI hybrid polymer electrolyte membrane in all-solid-state lithium battery.Electrochimica Acta2021, 389, 138747..
Gabryelczyk, A.; Ivanov, S.; Bund, A.; Lota, G. Corrosion of aluminium current collector in lithium-ion batteries: a review.J. Energy Storage2021, 43, 103226..
Rao, Q. S.; Liao, S. Y.; Huang, X. W.; Li, Y. Z.; Liu, Y. D.; Min, Y. G. Assembly of MXene/PP separator and its enhancement for Ni-rich LiNi0.8Co0.1Mn0.1O2electrochemical performance.Polymers2020, 12, 2192..
Mo, R.; Tan, X.; Li, F.; Tao, R.; Xu, J.; Kong, D.; Wang, Z.; Xu, B.; Wang, X.; Wang, C.; Li, J.; Peng, Y.; Lu, Y. Tin-graphene tubes as anodes for lithium-ion batteries with high volumetric and gravimetric energy densities.Nat. Commun.2020, 11, 1374..
Liu, L.; Zhao, H.; Lei, Y. Review on nanoarchitectured current collectors for pseudocapacitors.Small Methods2019, 3, 1800341..
Myung, S. T.; Hitoshi, Y.; Sun, Y. K. Electrochemical behavior and passivation of current collectors in lithium-ion batteries.J. Mater. Chem.2011, 21, 9891−9911..
Grigoriev, S.; Millet, P.; Volobuev, S.; Fateev, V. Optimization of porous current collectors for PEM water electrolysers.Int. J. hydrogen Energy2009, 34, 4968−4973..
Ye, Y.; Chou, L. Y.; Liu, Y.; Wang, H.; Lee, H. K.; Huang, W.; Wan, J.; Liu, K.; Zhou, G.; Yang, Y.; Yang, A.; Xiao, X.; Gao, X.; Boyle, D. T.; Chen, H.; Zhang, W.; Kim, S. C.; Cui, Y. Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries.Nat. Energy2020, 5, 786−793..
Chen, Y.; Fu, K.; Zhu, S.; Luo, W.; Wang, Y.; Li, Y.; Hitz, E.; Yao, Y.; Dai, J.; Wan, J.; Danner, V. A.; Li, T.; Hu, L. Reduced graphene oxide films with ultrahigh conductivity as Li-ion battery current collectors.Nano Lett.2016, 16, 3616−3623..
Wang, C. H.; Kurra, N.; Alhabeb, M.; Chang, J. K.; Alshareef, H. N.; Gogotsi, Y. Titanium carbide (MXene) as a current collector for lithium-ion batteries.ACS Omega2018, 3, 12489−12494..
Liu, Y.; Gao, D.; Xiang, H.; Feng, X.; Yu, Y. Research progress on copper-based current collector for lithium metal batteries.Energy Fuels2021, 35, 12921−12937..
Fei, X.; Dong, Z.; Gong, B.; Zhao, X. Lightweight through-hole copper foil as a current collector for lithium-ion batteries.ACS Appl. Mater. Interfaces2021, 13, 42266−42275..
Wang, S. H.; Yin, Y. X.; Zuo, T. T.; Dong, W.; Li, J. Y.; Shi, J. L.; Zhang, C. H.; Li, N. W.; Li, C. J.; Guo, Y. G. Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels.Adv. Mater.2017, 29, 1703729..
Chu, H. C.; Tuan, H. Y. High-performance lithium-ion batteries with 1.5 μm thin copper nanowire foil as a current collector.J. Power Sources2017, 346, 40−48..
Pan, C.; Chen, S. J.; Huang, Y. H.; Wang, L.; Luo, J. L.; Fu, X. Z. A facile method to fabricate lightweight copper coated polyimide film current collectors for lithium-ion batteries.J. Power Sources2022, 528, 231207..
Qiu, H.; Tang, T.; Asif, M.; Huang, X.; Hou, Y. 3D porous Cu current collectors derived by hydrogen bubble dynamic template for enhanced Li metal anode performance.Adv. Funct. Mater2019, 29, 1808468..
Li, Q.; Zhu, S.; Lu, Y. 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries.Adv. Funct. Mater.2017, 27, 1606422..
Zhang, R.; Wen, S.; Wang, N.; Qin, K.; Liu, E.; Shi, C.; Zhao, N. N-doped graphene modified 3D porous Cu current collector toward microscale homogeneous Li deposition for Li metal anodes.Adv. Energy Mater.2018, 8, 1800914..
Wang, Y.; Zhao, Z.; Zeng, W.; Liu, X.; Wang, L.; Zhu, J.; Lu, B. Hierarchically porous Cu current collector with lithiophilic Cu x O interphase towards high-performance lithium metal batteries.J. Energy Chem.2021, 58, 292−299..
Yun, Q.; He, Y. B.; Lv, W.; Zhao, Y.; Li, B.; Kang, F.; Yang, Q. H. Chemical dealloying derived 3D porous current collector for Li metal anodes.Adv. Mater.2016, 28, 6932−6939..
Wang, Y.; Sang, H. Q.; Zhang, W.; Qi, Y.; He, R. X.; Chen, B.; Sun, W.; Zhao, X. Z.; Fu, D.; Liu, Y. Electrophoretic deposited black phosphorus on 3D porous current collectors to regulate Li nucleation for dendrite-free lithium metal anodes.ACS Appl. Mater. Interfaces2020, 12, 51563−51572..
Yue, Y.; Liang, H. 3D current collectors for lithium-ion batteries: a topical review.Small Methods2018, 2, 1800056..
Yang, S.; Li, S.; Du, Z.; Du, J.; Han, C.; Li, B. MXene-Ti3C2armored layer for aluminum current collector enable stable high-voltage lithium-ion battery.Adv. Mater. Interfaces2022, 9, 2200856..
Liu, S.; Tang, S.; Zhang, X.; Wang, A.; Yang, Q H.; Luo, J. Porous Al current collector for dendrite-free Na metal anodes.Nano Lett.2017, 17, 5862−5868..
Abe, H.; Kubota, M.; Nemoto, M.; Masuda, Y.; Tanaka, Y.; Munakata, H.; Kanamura, K. High-capacity thick cathode with a porous aluminum current collector for lithium secondary batteries.J. Power Sources2016, 334, 78−85..
Yang, Y.; Yuan, W.; Zhang, X.; Ke, Y.; Qiu, Z.; Luo, J.; Tang, Y.; Wang, C.; Yuan, Y.; Huang, Y. A review on structuralized current collectors for high-performance lithium-ion battery anodes.Appl. Energy2020, 276, 115464..
Liu, Y.; Zhai, Y.; Xia, Y.; Li, W.; Zhao, D. Recent progress of porous materials in lithium-metal batteries.Small Structures2021, 2, 2000118..
Yehezkel, S.; Auinat, M.; Sezin, N.; Starosvetsky, D.; Ein-Eli, Y. Bundled and densified carbon nanotubes (CNT) fabrics as flexible ultra-light weight Li-ion battery anode current collectors.J. Power Sources2016, 312, 109−115..
Zhu, P.; Gastol, D.; Marshall, J.; Sommerville, R.; Goodship, V.; Kendrick, E. A review of current collectors for lithium-ion batteries.J. Power Sources2021, 485, 229321..
Hu, J. Q.; Li, Y. Z.; Liao, S. Y.; Huang, X. W.; Chen, Y. Z.; Peng, X. K.; Yang, Y. B.; Min, Y. G. Ultralight and high thermal conductive current collector derived from polyimide for advanced LIBs.ACS Appl. Energy Materials2021, 4, 9721−9730..
Noelle, D. J.; Wang, M.; Qiao, Y. Improved safety and mechanical characterizations of thick lithium-ion battery electrodes structured with porous metal current collectors.J. Power Sources2018, 399, 125−132..
Tsuda, T.; Ando, N.; Nakamura, S.; Ishihara, Y.; Hayashi, N.; Soma, N.; Gunji, T.; Tanabe, T.; Ohsaka, T.; Matsumoto, F. Improvement of high-rate discharging performance of LiFePO4cathodes by forming micrometer-sized through-holed electrode structures with a pico-second pulsed laser.Electrochimica Acta2019, 296, 27−38..
Nguyen, C. C.; Song, S. W. Interfacial structural stabilization on amorphous silicon anode for improved cycling performance in lithium-ion batteries.Electrochimica Acta2010, 55, 3026−3033..
Yang, S. Y., inAdvanced polyimide materials: synthesis, characterization, and applications. Elsevier: 2018 ..
Li, Y.; Sun, G.; Zhou, Y.; Liu, G.; Wang, J.; Han, S. Progress in low dielectric polyimide film—a review.rog. Org. Coatings2022, 172, 107103..
Wu, Z.; He, J.; Yang, H.; Yang, S. Progress in aromatic polyimide films for electronic applications: preparation, structure and properties.Polymers2022, 14, 1269..
Liu, Y. Y.; Wang, Y. K.; Wu, D. Y. Synthetic strategies for highly transparent and colorless polyimide film.J. Appl. Polym. Sci.2022, 139, e52604..
Chen, W.; Zhou, X.; Wan, M.; Tang, Y.Recent progress on polyimide aerogels against shrinkage: a review.J. Mater. Sci.2022, 57, 13233−13263..
Shah, S. A. A.; Idrees, R.; Saeed, S. A critical review on polyimide derived carbon materials for high-performance supercapacitor electrodes.J. Energy Storage2022, 55, 105667..
Huang, M. L.; Cai, Z.; Wu, Y. Z.; Lu, S. G.; Luo, B. S.; Li, Y. H. Metallic coloration on polyester fabric with sputtered copper and copper oxides films.Vacuum2020, 178, 109489..
Huang, M. L.; Lu, S. G.; Zhou, J. J.; Luo, B. S.; Li, Y. H. Metallic coloration with Cu/CuO coating on polypropylene nonwoven fabric viaa physical vapor deposition method and its multifunctional properties.J. Textile Institute2021, 113, 1345−1354..
Joo Kim, K.; Hyuk Kim, J.; Hoon Kang, J. Structural and optical characterization of Cu3N films prepared by reactive RF magnetron sputtering.J. Crystal Growth2001, 222, 767−772..
Majumdar, A.; Drache, S.; Wulff, H.; Mukhopadhyay, A.; Bhattacharyya, S.; Helm, C.; Hippler, R. Strain effects by surface oxidation of Cu3N thin films deposited by DC magnetron sputtering.Coatings2017, 7, 64..
Ektessabi, A.; Hakamata, S. XPS study of ion beam modified polyimide films.Thin solid films2000, 377, 621−625..
Lee, W. J.; Lee, Y. S.; Rha,S. K.; Lee, Y. J.; Lim, K. Y.; Chung, Y. D.; Whang, C. N. Adhesion and interface chemical reactions of Cu/polyimide and Cu/TiN by XPS.Appl. Surf. Sci.2003, 205, 128−136..
Buchwalter, L.; Greenblatt, J. An XPS study of the locus of failure between PMDA-ODA polyimide and SiO2surface.J. Adhesion1986, 19, 257−265..
Dong, S. S.; Shao, W. Z.; Yang, L.; Ye, H. J.; Zhen, L. Surface characterization and degradation behavior of polyimide films induced by coupling irradiation treatment.RSC Adv.2018, 8, 28152−28160..
Vasquez, R. CuO by XPS.Surface Science Spectra1998, 5, 262−266..
Poulston, S.; Parlett, P. M.; Stone, P.; Bowker, M. Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES.Surf. Interface Anal.1996, 24, 811−820..
Panzner, G.; Egert, B.; Schmidt, H. P. The stability of CuO and Cu2O surfaces during argon sputtering studied by XPS and AES.Surface Science1985, 151, 400−408..
Li, R.; Li, C.; He, S.; Di, M.; Yang, D. Damage effect of keV proton irradiation on aluminized Kapton film.Radiation Phys. Chem.2008, 77, 482−489..
Meng, X. D.; Zhen, C.; Liu, G.; Cheng, H. M. Stabilizing CuO photocathode with a Cu3N protection shell.Chinese J. Catal.2022, 43, 755−760..
Kang, S. W.; Xie, H. M.; Zhang, W.; Zhang, J. P.; Ma, Z.; Wang, R. S.; Wu, X. L. Improve the overall performances of lithium ion batteries by a facile method of modifying the surface of Cu current collector with carbon.Electrochimica Acta2015, 176, 604−609..
Wu, S.; Zhang, Z.; Lan, M.; Yang, S.; Cheng, J.; Cai, J.; Shen, J.; Zhu, Y.; Zhang, K.; Zhang, W. Lithiophilic Cu-CuO-Ni hybrid structure: advanced current collectors toward stable lithium metal anodes.Adv. Mater.2018, 30, 1705830..
Lei, H.; Zhang, M.; Niu, H.; Qi, S.; Tian, G.; Wu, D. Multilevel structure analysis of polyimide fibers with different chemical constitutions.Polymer2018, 149, 96−105..
Zhao, H.; Lei, D.; He, Y. B.; Yuan, Y.; Yun, Q.; Ni, B.; Lv, W.; Li, B.; Yang, Q. H.; Kang, F.; Lu, J. Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector.Adv. Energy Mater.2018, 8, 1800266..
Agubra, V. A.; Fergus, J. W. The formation and stability of the solid electrolyte interface on the graphite anode.J. Power Sources2014, 268, 153−162..
Wang, C.; Li, Q.; Wang, F.; Xia, G.; Liu, R.; Li, D.; Li, N.; Spendelow, J. S.; Wu, G. Morphology-dependent performance of CuO anodes via facile and controllable synthesis for lithium-ion batteries.ACS Appl. Mater.Interfaces2014, 6, 1243−1250..
Park, J. C.; Kim, J.; Kwon, H.; Song, H. Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials.Adv. Mater.2009, 21, 803−807..
Xu, Y. T.; Guo, Y.; Li, C.; Zhou, X. Y.; Tucker, M. C.; Fu, X. Z.; Sun, R.; Wong, C. P. Graphene oxide nano-sheets wrapped Cu2O microspheres as improved performance anode materials for lithium ion batteries.Nano Energy2015, 11, 38−47..
0
Views
76
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution