a.Institute of Macromolecular Compounds of the Russian Academy of Sciences, Saint Petersburg 199004, Russia
b.Limnological Institute of Siberian Branch of the Russian Academy of Sciences, Irkutsk 664033, Russia
Na_Zar@inbox.ru
Scan for full text
Zakharova, N. V.; Zelinskiy, S. N.; Strelova, M. S.; Danilovtseva, E. N.; Annenkov, V. V. Thermo- and pH-sensitive polymer with pendant spacer-linked imidazole cycles. Chinese J. Polym. Sci. 2024, 42, 437–445
Natalya V. Zakharova, Stanislav N. Zelinskiy, Mariya S. Strelova, et al. Thermo- and pH-sensitive Polymer with Pendant Spacer-linked Imidazole Cycles. [J]. Chinese Journal of Polymer Science 42(4):437-445(2024)
Zakharova, N. V.; Zelinskiy, S. N.; Strelova, M. S.; Danilovtseva, E. N.; Annenkov, V. V. Thermo- and pH-sensitive polymer with pendant spacer-linked imidazole cycles. Chinese J. Polym. Sci. 2024, 42, 437–445 DOI: 10.1007/s10118-023-3056-6.
Natalya V. Zakharova, Stanislav N. Zelinskiy, Mariya S. Strelova, et al. Thermo- and pH-sensitive Polymer with Pendant Spacer-linked Imidazole Cycles. [J]. Chinese Journal of Polymer Science 42(4):437-445(2024) DOI: 10.1007/s10118-023-3056-6.
Poly(N-(3-(1H-imidazol-1-yl)propyl)acrylamide) was synthesized. The methylene units in the side chain cause the polymer thermolability at 29-48°C and in the neutral pH range. The new polymer is able to form complexes with oligo-DNA more actively than poly(1-vinylimidazole) and can be applied to create finely controlled surfaces for cell culture.
By the reaction of poly(acryloyl chloride) with
N
-(3-aminopropyl)imidazole
poly(
N
-(3-(1
H
-imidazol-1-yl)propyl)acrylamide) was synthesized. The new polymer contains an imidazole ring removed from the main chain by a spacer of five bonds. The structure and purity
molecular weight
hydrodynamic and thermosensitive properties of the obtained sample were studied by
1
H- and
13
C-NMR
FTIR spectroscopy
acid-base titration
light scattering
turbidimetry and viscometry. The observed ability of the imidazole-containing polymer to form and destroy associates in water-salt solutions at pH 6.6−7.4 and temperatures of 29−48 °C indicates that these are promising candidates for designing complex biomedical systems. The new polymer is able to form complexes with oligo-DNA more actively than poly(1-vinylimidazole)
which is of interest for gene delivery applications. The polymer cross-linked with epichlorohydrin gives micro-relief coatings on the plastic surface
and the modified surface is able to attach negatively charged objects. This thermo- and pH-sensitive polymer modification can be applied to create finely controlled surfaces for cell culturing.
Imidazole-containing polymerThermolabilitypH-sensitivityThe modified surfaceDNA immobilization
Wei, M.; Gao, Y.; Li, X.; Serpe, M. J. Stimuli-responsive polymers and their applications.Polym. Chem.2017, 8, 127−143..
Cabane, E.; Zhang, X.; Langowska, K.; Palivan, C. G.; Meier, W. Stimuli-responsive polymers and their applications in nanomedicine.Biointerphases2012, 7, 9..
Bawa, P.; Pillay, V.; E Choonara, Y.; Toit, L. C. Stimuli-responsive polymers and their applications in drug delivery.Biomed. Mater.2009, 4, 022001..
Gandhi, A.; Paul, A.; Sen, S. O.; Sen, K. K. Studies on thermoresponsive polymers: Phase behaviour, drug delivery and biomedical applications.Asian J. Pharm. Sci.2015, 10, 99−107..
Kocak, G.; Tuncer, C.; Bütün, V. pH-Responsive polymers.Polym. Chem.2017, 8, 144−176..
Ward, M. A.; Georgiou, T. K. Thermoresponsive polymers for biomedical applications.Polymers2011, 3, 1215−1242..
Simonova, M. A.; Zakharova, N. V.; Khayrullin, A. R.; Filippov, A. P.; Annenkov, V. V. Behavior of double stimuli-responsive copolymer of N-(3-(diethylamino)propyl)- N-methylacrylamide and N,N-diethylacrylamide in aqueous solutions. Int.J. Polym. Anal. Charact.2018, 23, 236−243..
Zakharova, N. V.; Simonova, M. A.; Filippov, A. P.; Zelinskiy, S. N.; Annenkov, V. V. Synthesis, molecular characteristics, and stimulus-sensitivity of graft-copolymer of chitosan poly( N,N-diethylacrylamide).J. Molecular Liq.2019, 292, 111355..
Pilipenko, I. M.; Korzhikov-Vlakh, V. A.; Zakharova, N. V.; Tennikova, T. B.; Urtti, A. Thermo- and pH-sensitive glycosaminoglycans derivatives obtained by controlled grafting of poly( N-isopropylacrylamide).Carbohydr. Polym.2020, 248, 116764..
Kyriakides, T.; Cheung, C.; Murthy, N., Bornstein, P.; Stayton, P.; Hoffman, A. J. pH-Sensitive polymers that enhance intracellular drug delivery in vivo.Control. Rel.2002, 78, 295−303..
Drummond, D.; Zignani, M.; Leroux, J. Current status of pH-sensitive liposomes in drug delivery.Prog. Lipid Res.2000, 39, 409−460..
Durfresne, M.; Garrec, D.; Sant, V.; Leroux, J.; Ranger, M. Preparation and characterization of water-soluble pH-sensitive nanocarriers for drug delivery.Int. J. Pharmaceutics2004, 277, 81−90..
Gerasimov, O.; Boomer J.; Qualls M.; Thompson D. Cytosolic drug delivery using pH- and light-sensitive liposomes.Adv. Drug Deliv. Rev.1999, 38, 317−338..
Liu, D.; Sun, J. Thermoresponsive Polypeptoids.Polymers2020, 12, 2973..
Zhang, Y.; Broekhuis, A. A.; Stuart, M. C. A.; Picchioni, F. Polymeric amines by chemical modifications of alternating aliphatic polyketones.J. Appl. Polym. Sci.2008, 107, 262−271..
Bütün, V.; Weaver, J. V. M.; Bories-Azeau, X.; Cai, Y.; Armes, S. P. A brief review of ‘schizophrenic’ block copolymers.React. Funct. Polym.2006, 66, 157−165..
Smedt, S. C. D.; Demeester, J.; Hennink, W. E. Cationic polymer based gene delivery systems.Pharm. Res.2000, 17, 113−126..
Allen, M. H. Jr.; Day, K. N.; Hemp, S. T.; Long, T. E. Synthesis of folic acid-containing imidazolium copolymers for potential gene delivery applications.Macromol. Chem. Phys.2013, 214, 797−805..
Danilovtseva, E. N.; Krishnan, U. M.; Pal’shin, V. A.; Annenkov, V. V. Polymeric amines and ampholytes derived from poly(acryloyl chloride): synthesis, influence on silicic acid condensation and interaction with nucleic acid.Polymers2017, 9, 624..
Ofridam, F.; Tarhini, M.; Lebaz, N.; Gagnière, É.; Mangin, D.; Elaissari, A. pH-sensitive polymers: classification and some fine potential applications.Polym. Adv. Technol.2021, 32, 1455−1484..
Oda, Y.; Kanaoka, S.; Aoshima, S. Synthesis of dual pH/temperature-responsive polymers with amino groups by living cationic polymerization.J. Polym. Sci., Part A: Polym. Chem.2010, 4, 1207−1213..
Gil, E. S.; Hudson, S. M. Stimuli-responsive polymers and their bioconjugate.Prog. Polym. Sci.2004, 29, 1173−1222..
SPARC. pKa/property server. Ver 4.2 Mar. 2008. Available from, as of October 28, 2009: https://ibmlc2.chem.uga.edu/sparc/ .
Albert, A.Heterocyclic chemistry. 2ndEd.; Athlone Press, 1968 ..
Sundberg, R. J.; Martin, R. B. Interactions of histidine and other imidazole derivatives with transition metal ions in chemical and biological systems.Chem. Rev.1974, 74, 471−517..
Nozaki, Y.; Gurd, F. R. N.; Chen, R. F.; Edsall, J. T. The association of 4-methylimidazole with the ions of cupric copper and zinc; with some observations on 2,4-dimethylimidazole.J. Am. Chem. Soc.1957, 79, 2123−2129..
Pozdnyakov, A. S.; Emel’yanov, A. I.; Korzhova, S. A.; Kuznetsova, N. P.; Bolgova, Y. I.; Trofimova, O. M.; Semenova, T. A.; Prozorova, G. F. Green synthesis of stable nanocomposites containing copper nanoparticles incorporated in poly- N-vinylimidazole.Polymers2021, 13, 3212..
Luo, X. F.; Goh, S. H.; Lee, S. Y. Miscibility and interpolymer complexation of poly(1-vinylimidazole) with hydroxyl- and carboxyl-containing polymers.Makromol. Chem. Phys.1999, 200, 399−404..
Isikli, S.; Tuncagil, S.; Bozkurt, A.; Toppare, L. Immobilization of invertase in a novel proton conducting poly(vinylphosphonic acid—poly(1-vinylimidazole) network.J. Macromol. Sci. Part A2010, 47, 639−646..
Asayama, S.; Nishinohara, S.; Kawakami, H. Zinc-chelated poly(1-vinylimidazole) and a carbohydrate ligand polycation form DNA ternary complexes for gene delivery.Bioconjugate Chem.2011, 22, 1864−1868..
Danilovtseva, E. N.; Zelinskiy, S. N.; Pal'shin, V. A.; Kandasamy, G.; Krishnan, U. M.; Annenkov, V. V. Poly(1-vinylimidazole) prospects in gene delivery.Chinese J. Polym. Sci.2019, 37, 637−645..
Mazyar, N. L.; Annenkov, V. V.; Kruglova, V. A.; Ananiev, S. M.; Danilovtseva, E. N.; Rokhin, A. V.; Zinchenko, S. V. Acid-base properties of poly(1-vinylazoles) in aqueous solution.Rus. Chem. Bull. Intern. Ed.2000, 49, 2013−2017..
Sharma, A.; Srivastava, A. Pronounced influence of pH, metal-ion and solvent isotope on the thermoresponse of synthetic amphiphilic polypeptides.Polym. Chem.2013, 4, 5119−5128..
Seo, K.; Kim, D. Phase transition behavior of novel pH-sensitive polyaspartamide derivatives grafted with 1-(3-aminopropyl)imidazole.Macromol. Biosci.2006, 6, 758−766..
Bogomolova, A.; Kaberov, L.; Sedlacek, O.; Filippov, S. K.; Stepanek, P.; Král, V.; Wang, X. Y.; Liu, S. L.; Ye, X. D.; Hruby, M. Double stimuli-responsive polymer systems: how to use crosstalk between pH- and thermosensitivity for drug depots.Eur. Polym. J.2016, 84, 54−64..
Naka, K.; Masuoka, S.; Shinke, R.; Yamada, M. Synthesis of first- and second-generation imidazoleterminated POSS-core dendrimers and their pH responsive and coordination properties.Polym. J.2012, 44, 353−359..
Handel, T. M.; Ponticello, I. S.; Tan, J. S. Effects of side-chain structure on polymer conformation: synthesis and dilute solution properties.Macromolecules1987, 20, 264−267..
Zakharova, N. V.; Filippov, A. P.; Zelinskii, S. N.; Danilovtseva, E. N.; Annenkov, V. V. The influence of composition of thermo- and pH-sensitive copolymers of N-(3-(diethylamino)propyl)- N-methylacrylamide and N,N-diethylacrylamide on their behavior in aqueous solutions.Polym. Sci. A2019, 61, 1−8..
Annenkov, V. V.; Danilovtseva, E. N.; Zelinskiy, S. N.; Basharina, T. N.; Safonova, T. A.; Korneva, E. S.; Likhoshway, Ye. V.; Grachev, M. A. Novel fluorescent dyes based on oligopropylamines for the in vivostaining of eukaryotic unicellular algae.Anal. Biochem.2010, 407, 44−51..
Annenkov, V. V.; Danilovtseva, E. N.; Likhoshway, Y. V.; Patwardhan, S. V.; Perry C. C. Controlled stabilisation of silicic acid below pH 9 using poly(1-vinylimidazole).J. Mater. Chem.2008, 18, 553−559..
Buruiana, E.C.; Buruiana, T.; Hahui, L. Preparation and characterization of new optically active poly( N-acryloyl chloride) functionalized with ( S)-phenylalanine and pendant pyrene.J. Photochem. Photobiol. A2007, 189, 65−72..
Sandeli, E. B.; West, T. S. Recommended nomenclature for titrimetric analysis.Pure Appl. Chem.1969, 18, 427−436..
Danilovtseva, E. N.; Verkhozina, O. N.; Zelinskiy, S. N.; Ivanov, N. A.; Tsiganov, P.Y.; Basharina, T. N.; Annenkov, V. V. New fluorescent derivatives of oligopropylamines.ARKIVOC2013, 3, 266−281..
González-de-Castro, Á.; Broughton, H.; Martínez-Pérez, J. A.; Espinosa, J. F. Conformational features of secondary N-cyclopropyl amides.J. Org. Chem.2015, 80, 3914−3920..
Lanyon-Hogg, T.; Ritzefeld, M.; Masumoto, N.; Magee, A. I.; Rzepa, H. S.; Tate, E. W. Modulation of amide bond rotamers in 5-acyl-6,7-dihydrothieno[3,2- c]pyridines.J. Org. Chem.2015, 80, 4370−4377..
Lippert, J. L.; Robertson, J. A.; Havens, J. R.; Tan, J. S. Structural studies of poly( N-vinylimidazole) complexes by infrared and Raman spectroscopy.Macromolecules1985, 18, 63−67..
Katchalsky, A.; Mazur, J.; Spitnik, P. SECTION II: General behavior of biocolloids and polyelectrolytes in solution (continued) polybase properties of polyvinylamine.J. Polym. Sci.1957, 23, 513−532..
Nekrasova, T. N.; Gabrielyan, A. G.; Ptitsyn, O. B. Determination of the thermodynamic characteristics of the conformational transition in polymethacrylic acid from potentiometric titration curves.Polym. Sci. U.S.S.R.1968, 10, 348−355..
Kratochvil, P. inClassical light scattering from polymer solutions. Elsevier: Amsterdam, The Netherlands, 1987 , 334..
Schartl, W. inLight scattering from polymer solutions and nanoparticle dispersions. Springer: Berlin, Germany, 2007 , 175..
Amirova, A. I.; Dudkina, M. M.; Tenkovtsev, A. V.; Filippov, A. P. Self-assembly of star-shaped poly(2-isopropyl-2-oxazoline) in aqueous solutions.Colloid. Polym. Sci.2015, 293, 239−248..
Filippov, A. P.; Tarabukina, E. B.; Zakharova, N. V.; Amirova, A. I.; Simonova, M. A. Behaviorial features of aqueous solutions of thermoresponsive and pH-sensitive polymers with complicated architectures.Fiber Chem.2015, 47, 137−143..
Annenkov, V. V.; Krishnan, U. M.; Pal’shin, V. A.; Zelinskiy, S. N.; Kandasamy, G.; Danilovtseva, E. N. Design of oligonucleotide carriers: importance of polyamine chain length.Polymers2018, 10, 1297..
Boussif, O.; Lezoualc’h, F.; Zanta, M. A.; Mergny, M. D.; Scherman, D. A.; Demeneix, B.; Behr, J. P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine.Proc. Natl. Acad. Sci. U. S. A.1995, 92, 7297−7301..
Hu, X.; Li, Y.; Liu, T.; Zhang, G.; Liu, S. Photodegradable neutral-cationic brush block copolymers for nonviral gene delivery.Chem. Asian J.2014, 9, 2148−2155..
0
Views
12
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution