a.Ministry of Education, Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
b.Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030001, China
kezuomin@zju.edu.cn (M.Z.)
zhengqiang@zju.edu.cn (Q.Z.)
Scan for full text
Shi, X. Y.; Sun, S. H.; Yang, L.; Zhong, J.; Yu, X. F.; Xu, Z.; Zuo, M.; Song, Y. H.; Zheng, Q. Microstructure evolution and strain softening of carbon black filled natural rubber vulcanizates. Chinese J. Polym. Sci. 2023, 41, 1947–1957
Xuan-Yu Shi, Shi-Hao Sun, Li Yang, et al. Microstructure Evolution and Strain Softening of Carbon Black Filled Natural Rubber Vulcanizates. [J]. Chinese Journal of Polymer Science 41(12):1947-1957(2023)
Shi, X. Y.; Sun, S. H.; Yang, L.; Zhong, J.; Yu, X. F.; Xu, Z.; Zuo, M.; Song, Y. H.; Zheng, Q. Microstructure evolution and strain softening of carbon black filled natural rubber vulcanizates. Chinese J. Polym. Sci. 2023, 41, 1947–1957 DOI: 10.1007/s10118-023-3025-0.
Xuan-Yu Shi, Shi-Hao Sun, Li Yang, et al. Microstructure Evolution and Strain Softening of Carbon Black Filled Natural Rubber Vulcanizates. [J]. Chinese Journal of Polymer Science 41(12):1947-1957(2023) DOI: 10.1007/s10118-023-3025-0.
The Mullins effect is mainly dominated by the natural rubber (NR) matrix and the effect of carbon black (CB) phase is the strain amplification of NR viscoelasticity. Cyclic stretching may lead to the destruction of CB aggregates and the interface between CB and NR segments.
Incorporation of carbon black (CB) in natural rubber (NR) enhances the Mullins effect and Payne effect of their vulcanizates, but the strain softening mechanisms and the microstructure evolution in the vulcanizates have not been clearly concluded so far. We investigate the Mullins effect and Payne effect of CB filled NR vulcanizates by using cyclic tensile tests at different temperatures and dynamic rheological measurements combined with simultaneous electric conduction. During cyclic stretching, the normalized recovery hysteresis energy and accumulative softening energy for NR/CB vulcanizates with different loadings can be both superimposed on a master curve, indicating that the Mullins effect is mainly dominated by the rubber matrix. The irreversible simultaneous resistance evolution also reveals that the structural evolution of nanoparticles (NPs) network is not directly related to the Mullins effect. Moreover, the extension of linear viscoelastic region and the hysteresis of Payne effect for filled vulcanizates subjected to cyclic stretching indicate the destruction of CB aggregated structure and the interfacial layers between CB and rubber chains during cyclic stretching. This investigation would be illuminating for the microstructure evolution and strain softening of rubber nanocomposites under harsh service conditions.
Mullins effectPayne effectConductive connected networkNanocomposites
Murphy,W.N.Therationaluseofvulcanizablerubber.Am. J. Dent. Sci.1891,25,124−128..
Yamashita,S.;Takahashi,S.Molecularmechanismsofnaturalrubberbiosynthesis.Annu. Rev. Biochem.2020,89,821−851..
Song,Y.;Zheng,Q.Conceptsandconflictsinnanoparticlesreinforcementtopolymersbeyondhydrodynamics.Prog. Mater. Sci.2016,84,1−58..
Song,Y.;Zheng,Q.A.Linearviscoelasticityofpolymermeltsfilledwithnano-sizedfillers.Polymer2010,51,3262−3268..
Tan,Y.;Wang,L.;Xiao,J.;Zhang,X.;Wang,Y.;Liu,C.;Zhang,H.;Liu,C.;Xia,Y.;Sui,K.Synchronousenhancementandstabilizationofgrapheneoxideliquidcrystals:inductiveeffectofsodiumalginatesindifferentconcentrationzones.Polymer2019,160,107−114..
vanBeilen,J.B.;Poirier,Y.Establishmentofnewcropsfortheproductionofnaturalrubber.Trends Biotechnol.2007,25,522−529..
Liu,J.;Wu,S.;Tang,Z.;Lin,T.;Guo,B.;Huang,G.Newevidencedisclosedfornetworkinginnaturalrubberbydielectricrelaxationspectroscopy.Soft Matter2015,11,2290−2299..
Wu,J.;Qu,W.;Huang,G.;Wang,S.;Huang,C.;Liu,H.Super-resolutionfluorescenceimagingofspatialorganizationofproteinsandlipidsinnaturalrubber.Biomacromolecules2017,18,1705−1712..
Harwood,J.A.C.;Mullins,L.;Payne,A.R.Strssssofteninginnaturalrubbervulcanizates.2.stresssofteningeffectsinpuregumandfillerloadedrubbers.J. Appl. Polym. Sci.1965,9,3011−3021..
Diani,J.;Fayolle,B.;Gilormini,P.AreviewontheMullinseffect.Eur. Polym. J.2009,45,601−612..
Kakavas,P.A.Mechanicalpropertiesofbondedelastomerdiscssubjectedtotriaxialstress.J. Appl. Polym. Sci.1996,59,251−261..
Merckel,Y.;Diani,J.;Brieu,M.;Caillard,J.ConstitutivemodelingoftheanisotropicbehaviorofMullinssoftenedfilledrubbers.Mech. Mater.2013,57,30−41..
Payne,A.R.;Whittake.ReEffectofvulcanizationonlow-straindynamicpropertiesoffilledrubbers.J. Appl. Polym. Sci.1972,16,1191−1212..
Song,Y.;Du,M.;Yang,H.;Zheng,Q.Structureandviscoelasticityofrubbermaterials.Acta Polymerica Sinica(inChinese)2013,1115−1130..
Chazeau,L.;Brown,J.D.;Yanyo,L.C.;Sternstein,S.S.ModulusrecoverykineticsendotherinsightsintothePayneeffectforfilledelastomers.Polym. Compos.2000,21,202−222..
Payne,A.R.Elasticityofcarbonblacknetworks.J. Colloid Sci.1964,19,744−754..
Nagaraja,S.M.;Mujtaba,A.;Beiner,M.Quantificationofdifferentcontributionstodissipationinelastomernanoparticlecomposites.Polymer2017,111,48−52..
Leblanc,J.L.Simplifiedmodelingcalculationstoenlightenthemechanicalproperties(modulus)ofcarbonblackfilleddienerubbercompounds.J. Appl. Polym. Sci.2011,122,599−607..
Meier,J.G.;Klueppel,M.Carbonblacknetworkinginelastomersmonitoredbydynamicmechanicalanddielectricspectroscopy.Macromol. Mater. Eng.2008,293,12−38..
Papon,A.;Merabia,S.;Guy,L.;Lequeux,F.;Montes,H.;Sotta,P.;Long,D.R.Uniquenonlinearbehaviorofnano-filledelastomers:fromtheonsetofstrainsofteningtolargeamplitudesheardeformations.Macromolecules2012,45,2891−2904..
Majeste,J.;Vincent,F.Akineticmodelforsilica-filledrubberreinforcement.J. Rheol.2015,59,405−427..
Clough,J.M.;Creton,C.;Craig,S.L.;Sijbesma,R.P.CovalentbondscissionintheMullinseffectofafilledelastomer:real-timevisualizationwithmechanoluminescence.Adv. Funct. Mater.2016,26,9063−9074..
Stoeckelhuber,K.W.;Svistkov,A.S.;Pelevin,A.G.;Heinrich,G.Impactoffillersurfacemodificationonlargescalemechanicsofstyrenebutadiene/silicarubbercomposites.Macromolecules2011,44,4366−4381..
Coquelle,E.;Bossis,G.Mullinseffectinelastomersfilledwithparticlesalignedbyamagneticfield.Int. J. Solids Struct.2006,43,7659−7672..
Song,Y.;Zeng,L.;Zheng,Q.Reconsiderationoftherheologyofsilicafillednaturalrubbercompounds.J. Phys. Chem. B2017,121,5867−5875..
Qian,D.;Meng,F.ModellingMullinseffectinducedbychaindelaminationandreattachment.Polymer2021,222,123608..
Li,X.;Tian,C.;Li,H.;Liu,X.;Zhang,L.;Hong,S.;Ning,N.;Tian,M.Combinedeffectofvolumefractionsofnanofillersandfiller-polymerinteractionson3DmultiscaledispersionofnanofillerandPayneeffect.Compos. Part A-Appl. Sci. Manuf.2022,152,106722..
Wang,S.;Chester,S.A.ModelingthermalrecoveryoftheMullinseffect.Mech. Mater.2018,126,88−98..
Ma,C.;Ji,T.;Robertson,C.G.;Rajeshbabu,R.;Zhu,J.;Dong,Y.MolecularinsightintotheMullinseffect:irreversibledisentanglementofpolymerchainsrevealedbymoleculardynamicssimulations.Phys. Chem. Chem. Phys.2017,19,19468−19477..
Song,Y.;Zheng,Q.Applicationoftwophasemodeltolineardynamicrheologyoffilledpolymermelts.Polymer2011,52,6173−6179..
Li,Z.;Song,Y.;Zheng,Q.Payneeffectandweakovershootinrubbernanocomposites.Chinese J. Polym. Sci.2022,40,85−92..
Shi,X.;Sun,S.;Zhao,A.;Zhang,H.;Zuo,M.;Song,Y.;Zheng,Q.InfluenceofcarbonblackonthePayneeffectoffillednaturalrubbercompounds.Compos. Sci. Technol.2021,203,108586..
Song,Y.;Xu,Z.;Wang,W.;Zheng,Q.Payneeffectofcarbonblackfillednaturalrubbernanocomposites:Influencesofextraction,crosslinking,andswelling.J. Rheol.2021,65,807−820..
Zhong,X.;Song,Y.;Zheng,Q.;Wang,W.InfluenceofcoagentsonPayneeffectofbutadienerubbervulcanizates.Polymer2021,212,123298..
Xu,H.;Xia,X.;Hussain,M.;Song,Y.;Zheng,Q.Linearandnonlinearrheologicalbehaviorsofsilicafillednitrilebutadienerubber.Polymer2018,156,222−227..
Yang,R.;Song,Y.;Zheng,Q.Payneeffectofsilica-filledstyrene-butadienerubber.Polymer2017,116,304−313..
Hussain,M.;Yasin,S.;Akram,M.A.;Xu,H.;Song,Y.;Zheng,Q.Influenceofionicliquidsonstructureandrheologicalbehaviorsofsilica-filledbutadienerubber.Ind. Eng. Chem. Res.2019,58,18205−18212..
Xu,Y.;Xu,H.;Zheng,Q.;Song,Y.Influenceofionicliquidsonrheologicalbehaviorsofpolyisoprenerubber/silicacompounds.Polymer2019,183,121898..
Le,H.H.;Pham,T.;Henning,S.;Klehm,J.;Wiessner,S.;Stoeckelhuber,K.W.;Das,A.;Hoang,X.T.;Do,Q.K.;Wu,M.;Vennemann,N.;Heinrich,G.;Radusch,H.J.Formationandstabilityofcarbonnanotubenetworkinnaturalrubber:effectofnon-rubbercomponents.Polymer2015,73,111−121..
Huang,M.;Tunnicliffe,L.B.;Zhuang,J.;Ren,W.;Yan,H.;Busfield,J.J.C.Strain-dependentdielectricbehaviorofcarbonblackreinforcednaturalrubber.Macromolecules2016,49,2339−2347..
Steinhauser,D.;Moewes,M.;Klueppel,M.Carbonblacknetworkinginelastomersmonitoredbysimultaneousrheologicalanddielectricinvestigations.J. Phys. Condens. Matter2016,28,495103..
Beutier,C.;David,L.;Sudre,G.;Cassagnau,P.;Heuillet,P.;Cantaloube,B.;Serghei,A.In-situcoupledmechanical/electricalinvestigationsofEPDM/CBcompositematerials:theelectricalsignatureofthemechanicalMullinseffect.Compos. Sci. Technol.2022,218,109144..
Taniguchi,Y.;Mai,T.;Yamaguchi,M.;Tsunoda,K.;Urayama,K.InvestigatingmultiaxialMullinseffectofcarbon-black-reinforcedelastomersusingelectricalresistivitymeasurements.ACS Appl. Polym. Mater.2022,4,1139−1149..
Zhao,A.;Shi,X.;Sun,S.;Zhang,H.;Zuo,M.;Song,Y.;Zheng,Q.InsightsintothePayneeffectofcarbonblackfilledstyrene-butadienerubbercompounds.Chinese J. Polym. Sci.2021,39,81−90..
Holt,A.P.;Sangoro,J.R.;Wang,Y.Y.;Agapov,A.L.;Sokolov,A.P.Chainandsegmentaldynamicsofpoly(2-vinylpyridine)nanocomposites.Macromolecules2013,46,4168−4173..
Flory,P.J.;Rehner,J.Statisticalmechanicsofcross-linkedpolymernetworks.II.Swelling.J. Chem. Phys.1943,11,521−526..
Huneau,B.Strain-inducedcrystallizationofnaturalrubber:areviewofX-raydiffractioninvestigations.Rubber Chem. Technol.2011,84,425−452..
Li,Z.;Xu,H.;Xia,X.;Song,Y.;Zheng,Q.EnergydissipationaccompanyingMullinseffectofnitrilebutadienerubber/carbonblacknanocomposites.Polymer2019,171,106−114..
Li,Z.;Wen,F.;Hussain,M.;Song,Y.;Zheng,Q.ScalinglawsofMullinseffectinnitrilebutadienerubbernanocomposites.Polymer2020,193,122350..
Hou,F.;Song,Y.;Zheng,Q.Influenceofliquidisoprenerubberonstrainsofteningofcarbonblackfilledisoprenerubbernanocomposites.Chinese J. Polym. Sci.2021,39,887−895..
Song,Y.;Zheng,Q.Aguideforhydrodynamicreinforcementeffectinnanoparticle-filledpolymers.Crit. Rev. Solid State Mat. Sci.2016,41,318−346..
Hu,Z.;Zhou,J.;Song,Y.;Zheng,Q.;Wang,W.Strainsofteningofnaturalrubbercompositesfilledwithcarbonblackandaramidfiber.J. Rheol.2023,67,157−168..
Perez-Aparicio,R.;Vieyres,A.;Albouy,P.;Sanseau,O.;Vanel,L.;Long,D.R.;Sotta,P.Reinforcementinnaturalrubberelastomernanocomposites:breakdownofentropicelasticity.Macromolecules2013,46,8964−8972..
Aranguren,M.I.;Mora,E.;Degroot,J.V.;Macosko,C.W.Effectofreinforcingfillersontherheologyofpolymermelts.J. Rheol.1992,36,1165−1182..
Nasr,G.M.Vulcanizationconditions:HowtheyaffecttheelectricalconductivityofSBRloadedwiththepercolationconcentrationofFEF-black.Polym. Test.1996,15,585−591..
Li,B.;You,W.;Peng,L.;Huang,X.;Yu,W.Revealingthesheareffectontheinterfaciallayerinpolymernanocompositesthroughnanofiberreorientation.Macromolecules2023,56,3050−3063..
Kluppel,M.;Schramm,J.Ageneralizedtubemodelofrubberelasticityandstresssofteningoffillerreinforcedelastomersystems.Macromol. Theor. Simul.2000,9,742−754..
Suzuki,N.;Ito,M.;Yatsuyanagi,F.Effectsofrubber/fillerinteractionsondeformationbehaviorofsilicafilledSBRsystems.Polymer2005,46,193−201..
Wolff,S.;Wang,M.J.;Tan,E.H.Fillerelastomerinteractions.7.studyonboundrubber.Rubber Chem. Technol.1993,66,163−177..
0
Views
11
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution