a.Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
b.School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
zhailei@iccas.ac.cn (L.Z.)
fanlin@iccas.ac.cn (L.F.)
Scan for full text
Gao, M. Y.; Zhai, L.; Mo, S.; Jia, Y.; Liu, Y.; He, M. H.; Fan, L. Thermally conductive polyimide/boron nitride composite films with improved interfacial compatibility based on modified fillers by polyimide brushes. Chinese J. Polym. Sci. 2023, 41, 1921–1936
Meng-Yan Gao, Lei Zhai, Song Mo, et al. Thermally Conductive Polyimide/Boron Nitride Composite Films with Improved Interfacial Compatibility Based on Modified Fillers by Polyimide Brushes. [J]. Chinese Journal of Polymer Science 41(12):1921-1936(2023)
Gao, M. Y.; Zhai, L.; Mo, S.; Jia, Y.; Liu, Y.; He, M. H.; Fan, L. Thermally conductive polyimide/boron nitride composite films with improved interfacial compatibility based on modified fillers by polyimide brushes. Chinese J. Polym. Sci. 2023, 41, 1921–1936 DOI: 10.1007/s10118-023-2985-4.
Meng-Yan Gao, Lei Zhai, Song Mo, et al. Thermally Conductive Polyimide/Boron Nitride Composite Films with Improved Interfacial Compatibility Based on Modified Fillers by Polyimide Brushes. [J]. Chinese Journal of Polymer Science 41(12):1921-1936(2023) DOI: 10.1007/s10118-023-2985-4.
Boron nitride is chemically modified by polyimide brushes that are grafted on the filler surface. Interfacial compatibility between filler and matrix is greatly improved. Tensile strength of polyimide/boron nitride composite film is up to 80 MPa even at 50 wt% filler content. Both out-of-plane and in-plane thermal conductivity are over 0.8 W/(m·K).
Polyimide-based composite films with high thermal conductivity, good mechanical property and electrical insulating performance are urgently needed in the electronics and microelectronics fields. As one of the key technical challenges to be solved, interfacial compatibility between filler and matrix plays an important role for composite film. Herein, boron nitride was modified by grafting polyimide brushes ,via, a two-step method, and a series of thermally conductive polyimide/ boron nitride composite films were prepared. Both characterization and performance results proved that the interfacial interaction and compatibility was greatly enhanced, resulting in a significant reduction in defects and interfacial thermal resistance. The interphase width of transition zone between two phases was also efficiently enlarged due to polyimide brushes grafted on filler surface. As a result, composite films based on polyimide-grafted boron nitride exhibited significantly improved properties compared with those based on pristine filler. Tensile strength can reach up to 80 MPa even if the filler content is as high as 50 wt%. The out-of-plane and in-plane thermal conductivity of composite film increased to 0.841 and 0.850 W·m,−1,·K,−1, respectively. In addition, thermal and dielectric properties of composite films were also enhanced to some extent. The above results indicate that surface modification by chemically grafting polymer brushes is an effective method to improve two-phase interfacial compatibility so as to prepare composite film with enhanced properties.
PolyimideComposite filmBoron nitrideThermal conductivityInterfacial compatibility
Bai,L.;Zhai,L.;He,M.H.;Wang,C.O.;Mo,S.;Fan,L.Thermalexpansionbehaviorofpoly(amide-imide)filmswithultrahightensilestrengthandultralowCTE.Chinese J. Polym. Sci.2020,38,748−758..
Dong,X.D.;Wan,B.Q.;Qiu,L.;Zheng,M.S.;Gao,J.F.;Zha,J.W.Rigid/flexiblemolecularstructure-inducedpolyimideaerogelswithultralowpermittivityandthermalinsulationproperties.IET Nanodielectr.2022,10.1049/nde2.12041..
Ahn,C.;Kim,T.Y.;Hong,P.H.;Choi,S.;Lee,Y.J.;Kwon,H.;Jeon,H.;Ko,D.W.;Park,I.;Han,H.;Hong,S.W.Highlytransparent,colorlessopticalfilmwithoutstandingmechanicalstrengthandfoldingreliabilityusingmismatchedcharge-transfercomplexintensification.Adv. Funct. Mater.2022,32,2111040..
Liu,Y.W.;Tang,L.S.;Qu,L.J.;Liu,S.W.;Chi,Z.G.;Zhang,Y.;Xu,J.R.Synthesisandpropertiesofhighperformancefunctionalpolyimidescontainingrigidnonplanarconjugatedfluorenemoieties.Chinese J. Polym. Sci.2019,37,416−427..
Zhuang,Y.B.;Seong,J.G.;Lee,Y.M.Polyimidescontainingaliphatic/alicyclicsegmentsinthemainchains.Prog. Polym. Sci.2019,92,35−88..
Zhang,Y.L.;Ruan,K.P.;Zhou,K.;Gu,J.W.ControlleddistributedTi3C2Txhollowmicrospheresonthermallyconductivepolyimidecompositefilmsforexcellentelectromagneticinterferenceshielding.Adv. Mater.2023,35,2211642..
Yu,S.Q.;Huang,M.M.;Hao,R.;He,S.Q.;Liu,H.;Liu,W.T.;Zhu,C.S.Recentadvancesinthermallyconductivepolymercomposites.High Perform. Polym.2022,1-21..
Mokoena,T.E.;Magagula,S.I.;Mochane,M.J.;Mokhena,T.C.Mechanicalproperties,thermalconductivity,andmodelingofboronnitride-basedpolymercomposites:areview.Express Polym. Lett.2021,15,1148−1173..
Ding,D.L.;Zou,M.H.;Wang,X.;Qin,G.Z.;Zhang,S.Y.;Chan,S.Y.;Meng,Q.Y.;Liu,Z.G.;Zhang,Q.Y.;Chen,Y.H.ThermalconductivityofpolydispersehexagonalBN/polyimidecomposites:IterativeEMTmodelandmachinelearningbasedonfirstprinciplesinvestigation.Chem. Eng. J.2022,437,135438..
Gao,M.Y.;Wang,C.O.;Jia,Y.;Zhai,L.;Mo,S.;He,M.H.;Fan,L.Researchprogressinanisotropicthermalconductionbehaviorofpolyimidefilms.Acta Polymerica Sinica(inChinese)2021,52,1283−1297..
Haruki,M.Thermalconductivityforpolymercompositematerials:recentadvancesinpolyimidematerials.J. Chem. Eng. Jpn.2021,54,186−194..
Shoji,Y.;Ishige,R.;Higashihara,T.;Morikawa,J.;Hashimoto,T.;Takahara,A.;Watanabe,J.;Ueda,M.Cross-linkedliquidcrystallinepolyimideswithsiloxaneunits:theirmorphologyandthermaldiffusivity.Macromolecules2013,46,747−755..
Ruan,K.P.;Guo,Y.Q.;Gu,J.W.Liquidcrystallinepolyimidefilmswithhighintrinsicthermalconductivitiesandrobusttoughness.Macromolecules2021,54,4934−4944..
Ruan,K.P.;Gu,J.W.Orderedalignmentofliquidcrystallinegraphenefluorideforsignificantlyenhancingthermalconductivitiesofliquidcrystallinepolyimidecompositefilms.Macromolecules2022,55,4134−4145..
Chung,S.;Kim,J.T.;Kim,H.;Kim,D.H.;Jeong,S.W.Magneticalignmentofgraphiteplateletsinpolyimidematrixtowardaflexibleelectronicsubstratewithenhancedthermalconductivity.Mater. Today Commun.2022,30,103026..
Ruan,K.P.;Guo,Y.Q.;Lu,C.Y.;Shi,X.T.;Ma,T.B.;Zhang,Y.L.;Kong,J.;Gu,J.W.Significantreductionofinterfacialthermalresistanceandphononscatteringingraphene/polyimidethermallyconductivecompositefilmsforthermalmanagement.Research2021,2021,8438614..
Haruki,M.;Tada,J.;Funaki,R.;Onishi,H.;Tada,Y.Enhancingthermalconductivitiesofhexagonalboronnitride/fluorinatedpolyimidecompositematerialsusingdirectcurrentelectricalfields.Thermochim. Acta2020,684,178491..
Wei,S.Y.;Zheng,Z.B.;Yu,Q.X.;Fan,Z.G.;Liu,S.W.;Chi,Z.G.;Zhang,Y.;Xu,J.R.EnhancedthermalconductivityofPIfilmsbystrengtheningthree-dimensionalrGonetworktemplate.Acta Polymerica Sinica(inChinese)2019,50,402−409..
Song,H.;Kim,B.G.;Kim,Y.S.;Bae,Y.S.;Kim,J.;Yoo,Y.Synergisticeffectsofvariousceramicfillersonthermallyconductivepolyimidecompositefilmsandtheirmodelpredictions.Polymers2019,11,484..
Han,Y.X.;Ruan,K.P.;Gu,J.W.Multifunctionalthermallyconductivecompositefilmsbasedonfungaltree-likeheterostructuredsilvernanowires@boronnitridenanosheetsandaramidnanofibers.Angew. Chem. Int. Ed.2023,62,e202216093..
Han,Y.X.;Ruan,K.P.;Gu,J.W.Janus(BNNS/ANF)-(AgNWs/ANF)thermalconductivitycompositefilmswithsuperiorelectromagneticinterferenceshieldingandjouleheatingperformances.Nano Res.2022,15,4747−4755..
Hwang,G.H.;Kwon,Y.S.;Lee,J.S.;Jeong,Y.G.Enhancedmechanicalandanisotropicthermalconductivepropertiesofpolyimidenanocompositefilmsreinforcedwithhexagonalboronnitridenanosheets.J. Appl. Polym. Sci.2020,138,50324..
Chen,H.Y.;Ginzburg,V.V.;Yang,J.;Yang,Y.F.;Liu,W.;Huang,Y.;Du,L.B.;Chen,B.Thermalconductivityofpolymer-basedcomposites:fundamentalsandapplications.Prog. Polym. Sci.2016,59,41−85..
Ding,D.L.;Wang,H.T.;Wu,Z.Q.;Chen,Y.H.;Zhang,Q.Y.Highlythermallyconductivepolyimidecompositesviaconstructing3Dnetworks.Macromol. Rapid Commun.2019,1800805..
Wu,Y.M.;Ye,K.;Liu,Z.D.;Wang,M.J.;Chee,K.W.A.;Lin,C.;Jiang,N.;Yu,J.H.Effectivethermaltransporthighwayconstructionwithindielectricpolymercompositesviaavacuum-assistedinfiltrationmethod.J. Mater. Chem. C2018,6,6494−6501..
Zhang,G.D.;Fan,L.;Bai,L.;He,M.H.;Zhai,L.;Mo,S.Mesoscopicsimulationassistantdesignofimmisciblepolyimide/BNblendfilmswithenhancedthermalconductivity.Chinese J. Polym. Sci.2018,36,1394−1402..
Lau,K.Y.;Piah,M.A.M.Polymernanocompositesinhighvoltageelectricalinsulationperspective:areview.Malaysian Polym. J.2011,6,58−69..
Tanimoto,M.;Ando,S.Preventionofvoidformationinparticulate-filledpolymercomposites:Effectsofthermoplasticmatricesandresidualsolvent.Compos. Sci. Technol.2016,123,268−275..
Ma,X.Y.;Liu,L.Z.;Zhang,X.R.;Lv,T.ThermalconductivityenhancementofpolyimidefilmsfilledwithBNandAlNfillers.High Perform. Polym.2019,31,959−968..
Zha,J.W.;Yao,S.C.;Qiu,Y.;Zheng,M.S.;Dang,Z.M.Enhanceddielectricpropertiesandenergystorageofthesandwich-structuredpoly(vinylidenefluoride-co-hexafluoro-propylene)compositefilmswithfunctionalBaTiO3@Al2O3nanofibres.IET Nanodielectr.2019,2,103−108..
Ding,D.L.;Shang,Z.H.;Zhang,X.;Lei,X.F.;Liu,Z.G.;Zhang,Q.Y.;Chen,Y.H.Greatlyenhancedthermalconductivityofpolyimidecompositesbypolydopaminemodificationandthe2D-alignedstructure.Ceram. Int.2020,46,28363−28372..
Duan,G.Y.;Cao,Y.T.;Quan,J.Y.;Hu,Z.M.;Wang,Y.;Yu,J.R.;Zhu,J.BioinspiredconstructionofBN@polydopamine@Al2O3fillersforpreparationofapolyimidedielectriccompositewithenhancedthermalconductivityandbreakdownstrength.J. Mater. Sci.2020,55,8170−8184..
Ou,X.H.;Lu,X.M.;Chen,S.S.;Lu,Q.H.Thermalconductivehybridpolyimidewithultrahighheatresistance,excellentmechanicalpropertiesandlowcoefficientofthermalexpansion.Eur. Polym. J.2020,122,109368..
Ma,L.L.;Ma,T.;Wang,B.X.;Fei,X.;Han,R.Y.;Lv,P.;Hao,C.C.;Lei,Q.Q.Effectsofcouplingagentsonpropertiesofpolyimide/h-BNcompositefilms.Insul. Mater.(inChinese)2017,50,15−20..
Kizilkaya,C.;Mülazim,Y.;VezirKahraman,M.;KayamanApohan,N.;Güngör,A.Synthesisandcharacterizationofpolyimide/hexagonalboronnitridecomposite.J. Appl. Polym. Sci.2012,124,706−712..
Zhang,S.H.;Li,X.Y.;Guan,X.X.;Shi,Y.C.;Wu,K.;Liang,L.Y.;Shi,J.;Lu,M.G.Synthesisofpyridine-containingdiamineandpropertiesofitspolyimidesandpolyimide/hexagonalboronnitridecompositefilms.Compos. Sci. Technol.2017,152,165−172..
Yang,N.;Xu,C.;Hou,J.;Yao,Y.M.;Zhang,Q.X.;Grami,M.E.;He,L.Q.;Wang,N.Y.;Qu,X.W.Preparationandpropertiesofthermallyconductivepolyimide/boronnitridecomposites.RSC Adv.2016,6,18279−18287..
Liu,L.Z.;Cao,C.H.;Ma,X.Y.;Zhang,X.R.;Lv,T.Thermalconductivityofpolyimide/AlNandpolyimide/(AlN + BN)compositefilmspreparedbyin situpolymerization.J. Macromol. Sci. A2020,57,398−407..
Guo,Y.Q.;Lyu,Z.Y.;Yang,X.T.;Lu,Y.J.;Ruan,K.P.;Wu,Y.L.;Kong,J.;Gu,J.W.Enhancedthermalconductivitiesanddecreasedthermalresistancesoffunctionalizedboronnitride/polyimidecomposites.Compos. Part B-Eng.2019,164,732−739..
Zhang,Y.J.;Wang,J.;Chen,Y.J.Polyhedraloligosilsesquioxane-modifiedboronnitrideenhancesthemechanicalpropertiesofpolyimidenanocomposites.RSC Adv.2022,12,7276−7283..
Yang,X.;Wang,C.Y.;Lu,R.;Shen,Y.N.;Zhao,H.B.;Li,J.;Li,R.Y.;Zhang,L.X.;Chen,H.S.;Zhang,T.;Zheng,X.H.Progressinmeasurementofthermoelectricpropertiesofmicro/nanothermoelectricmaterials:acriticalreview.Nano Energy2022,101,107553..
Aiyiti,A.;Hu,S.Q.;Wang,C.R.;Xi,Q.;Cheng,Z.F.;Xia,M.G.;Ma,Y.L.;Wu,J.B.;Guo,J.;Wang,Q.L.;Zhou,J.;Chen,J.;Xu,X.F.;Li,B.W.Thermalconductivityofsuspendedfew-layerMoS2.Nanoscale2018,10,2727−2734..
Wang,H.T.;Ding,D.L.;Liu,Q.;Chen,Y.H.;Zhang,Q.Y.Highlyanisotropicthermallyconductivepolyimidecompositesviathealignmentofboronnitrideplatelets.Compos. Part B-Eng.2019,158,311−318..
Houssat,M.;Villeneuve-Faure,C.;LahoudDignat,N.;Locatelli,M.L.;Cambronne,J.P.TemperatureinfluenceonPI/Si3N4nanocompositedielectricproperties:amultiscaleapproach.Polymers2021,13,1936..
Zhang,H.F.;Hao,Q.;Tian,H.C.;Yao,P.J.;Liu,X.Y.;Yu,B.;Ning,N.Y.;Tian,M.;Zhang,L.Q.Polyurethane-polysiloxanecopolymercompatibilizedSiR/TPUTPVwithcomfortablehumantouchtowardwearabledevices.Chinese J. Polym. Sci.2023,41,258−266..
Bai,L.;Zhai,L.;He,M.H.;Wang,C.O.;Mo,S.;Fan,L.Preparationofheat-resistantpoly(amide-imide)filmswithultralowcoefficientsofthermalexpansionforoptoelectronicapplication.React. Funct. Polym.2019,141,155−164..
Wang,C.O.;Zhai,L.;Mo,S.;Liu,Y.;Gao,M.Y.;Jia,Y.;He,M.H.;Fan,L.Effectofaggregationstructureonthermalexpansionbehaviorofpolyimidefilmswithdifferentthickness.Chinese J. Polym. Sci.2022,40,1651−1661..
Bai,L.;Zhai,L.;Wang,C.O.;He,M.H.;Mo,S.;Fan,L.Thermalexpansionbehaviorofamide-containingpolyimidefilmswithultralowthermalexpansioncoefficient.Chem. J. Chinese Univ.(inChinese)2020,41,795−802..
Bai,L.;Zhai,L.;He,M.H.;Wang,C.O.;Mo,S.;Fan,L.Effectofhightemperatureannealingonthermalexpansionbehaviorofpoly(amide-imide)filmswithultralowcoefficientofthermalexpansion.Acta Polymerica Sinica(inChinese)2019,50,1305−1313..
Liu,L.;Shen,S.Y.;Wang,Y.Y.Enhancedthermalconductivityofflexibleh-BN/polyimidecompositesfilmswithethylcellulose.e-Polymers2019,19,305−312..
Ou,X.H.;Chen,S.S.;Lu,X.M.;Lu,Q.H.Enhancementofthermalconductivityanddimensionalstabilityofpolyimide/boronnitridefilmsthroughmechanochemistry.Compos. Commun.2021,23,100549..
Tan,W.Y.;Jian,L.F.;Chen,W.P.;Zhang,Y.W.;Lu,X.C.;Huang,W.J.;Zhang,J.S.;Wu,J.W.;Feng,J.L.;Liu,Y.D.;Cui,T.T.;Min,Y.G.Afacilestrategyforintrinsiclow-Dkandlow-Dfpolyimidesenabledbyspirobifluorenegroups.Chinese J. Polym. Sci.2023,41,288−296..
Liu,X.J.;Zheng,M.S.;Chen,G.;Dang,Z.M.;Zha,J.W.High-temperaturepolyimidedielectricmaterialsforenergystorage:Theory,design,preparationandproperties.Energ. Environ. Sci.2022,15,56−81..
Fan,Z.G.;Liu,S.W.;Chi,Z.G.;Zhang,Y.;Xu,J.R.Constructionandstudyofquantitativestructure-propertyrelationshipmodelforintrinsicpolyimidedielectricconstant.Acta Polymerica Sinica(inChinese)2021,52,750−761..
Nan,C.;Liu,G.;Lin,Y.H.;Li,M.Interfaceeffectonthermalconductivityofcarbonnanotubecomposites.Appl. Phys. Lett.2004,85,3549−3551..
Ruan,K.P.;Shi,X.T.;Guo,Y.Q.;Gu,J.W.Interfacialthermalresistanceinthermallyconductivepolymercomposites:areview.Compos. Commun.2020,22,100518..
Lin,Z.Y.;Liu,Y.;Raghavan,S.;Moon,K.S.;Sitaraman,S.K.;Wong,C.P.Magneticalignmentofhexagonalboronnitrideplateletsinpolymermatrix:towardhighperformanceanisotropicpolymercompositesforelectronicencapsulation.ACS Appl. Mater. Interfaces2013,5,7633−7640..
0
Views
9
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution