a.State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
b.Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
c.Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
yubing@mail.buct.edu.cn (B.Y.)
tianm@mail.buct.edu.cn (M.T.)
Scan for full text
Yu, T. X.; Liu, Y. Y.; Tian, F. Y.; Ning, N. Y.; Yu, B.; Tian, M. Silicone elastomer with high elongation at break used in digital light processing 3D printing. Chinese J. Polym. Sci. 2023, 41, 1786–1795
Tian-Xin Yu, Ya-Yuan Liu, Fu-Yue Tian, et al. Silicone Elastomer with High Elongation at Break Used in Digital Light Processing 3D Printing. [J]. Chinese Journal of Polymer Science 41(11):1786-1795(2023)
Yu, T. X.; Liu, Y. Y.; Tian, F. Y.; Ning, N. Y.; Yu, B.; Tian, M. Silicone elastomer with high elongation at break used in digital light processing 3D printing. Chinese J. Polym. Sci. 2023, 41, 1786–1795 DOI: 10.1007/s10118-023-2983-6.
Tian-Xin Yu, Ya-Yuan Liu, Fu-Yue Tian, et al. Silicone Elastomer with High Elongation at Break Used in Digital Light Processing 3D Printing. [J]. Chinese Journal of Polymer Science 41(11):1786-1795(2023) DOI: 10.1007/s10118-023-2983-6.
The light curing system is designed based on crosslinking reaction and in-situ chain extension which can be applied in 3D printing, resulting in lower viscosity of the precursor before printing and considerable mechanical properties after printing.
3D printing silicone elastomer has demonstrated great potential in diverse areas such as medical devices, flexible electronics and soft robotics. It is of great value to investigate how to improve the mechanical properties, including tensile strength and elongation at break of printed parts. In this work, a light curing system that can be applied in silicone elastomer 3D printing is explored, which is composed of vinyl terminated polysiloxane as the macromer and thiol containing polysiloxane as the crosslinking agent, and a chain extension reaction is also introduced into this light curing system ,via, the addition of the chain extender dithiol molecules, and a light curing system accompanied with chain extension is designed and realized based on the thiol-ene click reaction mechanism. After reinforced with silica fillers, the obtained light curing system can endow the light curing silicone elastomer with better mechanical properties under the condition of a lower viscosity of the precursor, the tensile strength and elongation at break can reach 525.5 kPa and 601%, respectively. This light curing system provides a feasible method to solve the contradiction between the viscosity of the precursor and the mechanical properties of the light curing elastomer in the digital light processing (DLP) 3D printing field.
Silicone elastomerThiol-ene click chemistryLight curing3D-printingChain extender
Giri,R.;Naskar,K.;Nando,G.B.Effectofelectronbeamirradiationondynamicmechanical,thermalandmorphologicalpropertiesofLLDPEandPDMSrubberblends.Radiat. Phys. Chem.2012,81,1930−1942..
Ren,L.F.;Liu,C.;Xu,Y.;Zhang,X.;Shao,J.;He,Y.High-performanceelectrospinning-phaseinversioncompositePDMSmembraneforextractivemembranebioreactor:fabrication,characterization,optimizationandapplication.J. Membr. Sci.2020,597,117624..
DallaMonta,A.;Razan,F.;LeCam,J.B.;Chagnon,G.Usingthickness-shearmodequartzresonatorforcharacterizingtheviscoelasticpropertiesofPDMSduringcross-linking,fromtheliquidtothesolidstateandatdifferenttemperatures.Sensor. Actuat. A-Phys.2018,280,107−113..
Montazerian,H.;Mohamed,M.;Montazeri,M.M.;Kheiri,S.;Milani,A.;Kim,K.;Hoorfar,M.PermeabilityandmechanicalpropertiesofgradientporousPDMSscaffoldsfabricatedby3D-printedsacrificialtemplatesdesignedwithminimalsurfaces.Acta Biomater.2019,96,149−160..
Wolf,M.P.;Salieb-Beugelaar,G.B.;Hunziker,P.PDMSwithdesignerfunctionalities—properties,modificationsstrategies,andapplications.Prog. Polym. Sci.2018,83,97−134..
Bhattacharjee,N.;Urrios,A.2;Kang,S.;Folch,A.Theupcoming3D-printingrevolutioninmicrofluidics.Lab. Chip.2016,(No.10),1720−1742..
EmilioO.B.;OzanErol,MichalM;RunhanT;DavidH.G.;LewisH.R.;SungH.K.3Dprintingandcharacterizationofasoftandbiostableelastomerwithhighflexibilityandstrengthforbiomedicalapplications.J. Mech. Behav. Biomed.2022,104,1751−6161..
Abdollahi,S.Markvicka,E.J.Majidi,C.Feinberg,A.W.3Dprintingsiliconeelastomerforpatient-specificwearablepulseoximeter.Adv. Healthc. Mater.2020,9,1901735..
Peng,S.;Wang,Z.;Lin,J.;Miao,J.T.;Zheng,L.;Yang,Z.;Weng,Z.;Wu,L.Tailoredandhighlystretchablesensorpreparedbycrosslinkinganenhanced3DprintedUV-curablesacrificialmold.Adv. Funct. Mater.2021,31,2008729..
Guo,Y.;Chen,S.;Sun,L.;Yang,L.;Zhang,L.;Lou,J.;You,Z.Degradableandfullyrecyclabledynamicthermosetelastomerfor3D-printedwearableelectronics.Adv. Funct. Mater.2021,31(9),2009799..
Xuan,H.;Guan,Q.;Zhang,L.;You,Z.Thermoplasticphotoheatingpolymerenables3D-printedself-healinglight-propelledsmartdevices.Adv. Funct. Mater.2021,31,2009568..
Yang,Y.;Lei,D.;Huang,S.;Yang,Q.;Song,B.;Guo,Y.;Shen,A.;Yuan,Z.;Li,S.;Qing,F.L.;Ye,X.;You,Z.;Zhao,Q.Elastic3D-printedhybridpolymericscaffoldimprovescardiacremodelingaftermyocardialinfarction.Adv. Healthc. Mater.2019,8,1900065..
Lu,X.;Ambulo,C.P.;Wang,S.;Rivera-Tarazona,L.K.;Kim,H.;Searles,K.;Ware,T.H.4D-PrintingofPhotoswitchableActuators.Angew. Chem. Int. Ed.2021,60,5536−5543..
Ceseracciu,L.;Heredia-Guerrero,J.A.;Dante,S.;Athanassiou,A.;Bayer,I.S.Robustandbiodegradableelastomersbasedoncornstarchandpolydimethylsiloxane(PDMS).ACS Appl. Mater. Interfaces2015,7,3742−3753..
Du,K.;Basuki,J.;Glattauer,V.;Mesnard,C.;Nguyen,A.T.;Alexander,D.L.J.;Hughes,T.C.Digitallightprocessing3DprintingofPDMS-basedsoftandelasticmaterialswithtunablemechanicalproperties.ACS Appl. Polym. Mater.2021,3,3049−3059..
Valino,A.D.;Dizon,J.R.C.;Espera,A.H.Jr.;Chen,Q.;Messman,J.;Advincula,R.C.Advancesin3Dprintingofthermoplasticpolymercompositesandnanocomposites.Prog. Polym. Sci.2019,98,101162..
Ji,Z.;Jiang,D.;Zhang,X.;Guo,Y.;Wang,X.Facilephotoandthermaltwo-stagecuringforhigh-performance3Dprintingofpoly(dimethylsiloxane).Macromol. Rapid Commun.2020,41,2000064..
Zhou,L.Y.;Gao,Q.;Fu,J.Z.;Chen,Q.Y.;Zhu,J.P.;Sun,Y.;He,Y.Multimaterial3Dprintingofhighlystretchablesiliconeelastomers.ACS Appl. Mater. Interfaces2019,11,23573−23583..
Wu,A.S.;SmallIV,W.;Bryson,T.M.;Cheng,E.;Metz,T.R.;Schulze,S.E.;Duoss,E.B.;Wilson,T.S.3Dprintedsiliconeswithshapememory.Sci. Rep.2017,7,1−6..
Bachtiar,E.O.;Erol,O.;Millrod,M.;Tao,R.;Gracias,D.H.;Romer,L.H.;Kang,S.H.3Dprintingandcharacterizationofasoftandbiostableelastomerwithhighflexibilityandstrengthforbiomedicalapplications.J. Mech. Behav. Biomed.2020,104,103649..
Zhou,L.Y.;Fu,J.;He,Y.Areviewof3Dprintingtechnologiesforsoftpolymermaterials.Adv. Funct. Mater.2020,30,2000187..
Cao,J.;Wang,Y.;Wang,D.;Sun,R.;Guo,M.;Feng,S.Asuper-amphiphilic3Dsiliconespongewithhighporosityfortheefficientadsorptionofvariouspollutants.Macromol. Rapid Commun.2021,42,2000603..
Shah,D.M.;Morris,J.;Plaisted,T.A.;Amirkhizi,A.V.;Hansen,C.J.HighlyfilledresinsforDLP-basedprintingoflowdensity,highmodulusmaterials.3D Print. Addit. Manuf.2021,37,101736..
Zarek,M.;Layani,M.;Eliazar,S.;Mansour,N.;Cooperstein,I.;Shukrun,E.;Szlar,A.;Cohn,D.;Magdassi,S.4Dprintingshapememorypolymersfordynamicjewelleryandfashionwear.Virtual. Phys. Protory.2016,11,263−270..
Peltola,S.M.;Melchels,F.P.W.;Grijpma,D.W.;Kellomaki,M.Areviewofrapidprototypingtechniquesfortissueengineeringpurposes.Ann. Med.2008,40,268−280..
Xiang,H.;Wang,X.;Ou,Z.;Lin,G.;Yin,J.;Liu,Z.;Zhang,L.;Liu,X.UV-curable,3Dprintableandbiocompatiblesiliconeelastomers.Prog. Org. Coat.2019,137,105372..
Liu,Z.;Hong,P.;Huang,Z.;Zhang,T.;Xu,R.;Chen,L.;Xiang,H.;Liu,X.Self-healing,reprocessingand3Dprintingoftransparentandhydrolysis-resistantsiliconeelastomers.Chem. Eng. J.2020,387,124142..
Ziraki,S.;Zebarjad,S.M.;Hadianfard,M.J.Astudyonthetensilepropertiesofsiliconerubber/polypropylenefibers/silicahybridnanocomposites.J. Mech. Behav. Biomed.2016,57,289−296..
Guo,L.;Yang,X.;Dong,F.;Qian,Y.;Guo,J.;Lin,X.;Shaghaleh,H.;Liu,W.;Xu,X.;Wang,S.Apinene-basedsilanecrosslinkerforimprovedmechanicalstrength/transparencyofroom-temperaturevulcanizingsiliconerubber.Mater. Chem. Phys.2020,247,122868..
Yang,Z.;Peng,S.;Wang,Z.;Miao,J.T.;Zheng,L.;Wu,L.;Weng,Z.UV-curable,low-viscosityresinwithahighsilicafillercontentforpreparingultrastiff,3D-printedmolds.ACS Appl. Polym. Mater.2022,4,2636−2647..
Zhao,T.;Yu,R.;Li,S.;Li,X.;Zhang,Y.;Yang,X.;Zhao,X.;Wang,C.;Liu,Z.;Dou,R.Superstretchableandprocessablesiliconeelastomersbydigitallightprocessing3Dprinting.ACS Appl. Mater. Interfaces2019,11,14391−14398..
Wallin,T.J.;Simonsen,L.E.;Pan,W.;Wang,K.;Giannelis,E.;Shepherd,R.F.;Mengüç,Y.3Dprintabletoughsiliconedoublenetworks.Nat. Commun.2020,11,4000..
Yu,B.;Jiang,X.;Qin,N.;Yin,J.Thiol-enephotocrosslinkedhybridvesiclesfromco-assemblyofPOSSandpoly(etheramine)(PEA).Chem. Commun.2011,47,12110−12112..
Lin,H.;Wan,X.;Jiang,X.;Wang,Q.;Yin,J.Ananoimprintlithographyhybridphotoresistbasedonthethiol-enesystem.Adv. Funct. Mater.2011,21,2960−2967..
Xu,Y.;Xu,H.;Jiang,X.;Yin,J.Versatilefunctionalizationofthemicropatternedhydrogelofhyperbranchedpoly(etheramine)basedon“thiol-yne”chemistry.Adv. Funct. Mater.2014,24,1679−1686..
Herzberger,J.;Sirrine,J.M.;Williams,C.B.;Long,T.E.Polymerdesignfor3Dprintingelastomers:recentadvancesinstructure,properties,andprinting.Prog. Polym. Sci.2019,97,101144..
Nguyen,K.D.Q.;Megone,W.V.;Kong,D.;Gautrot,J.E.Ultrafastdiffusion-controlledthiol-enebasedcrosslinkingofsiliconeelastomerswithtailoredmechanicalpropertiesforbiomedicalapplications.Polym. Chem.2016,7,5281−5293..
Zheng,S.;Zlatin,M.;Selvaganapathy,P.R.;Brook,M.A.Multiplemodulussiliconeelastomersusing3Dextrusionprintingoflowviscosityinks.3d Print. Addit. Manuf.2018,24,86−92..
vandenBerg,O.;Nguyen,L.T.T.;Teixeira,R.F.A.;Goethals,F.;Özdilek,C.;Berghmans,S.;DuPrez,F.E.Lowmodulusdrysilicone-gelmaterialsbyphotoinducedthiol-enechemistry.Macromolecules2014,47,1292−1300..
Wallin,T.J.;Pikul,J.H.;Bodkhe,S.;Peele,B.N.;MacMurray,B.C.;Therriault,D.;McEnerney,B.W.;Dillon,R.P.;Giannelis,E.P.;Shepherd,R.F.Clickchemistrystereolithographyforsoftrobotsthatself-heal.J. Mater. Chem. B2017,5,6249−6255..
Xiang,H.;Wang,X.;Xi,L.;Dong,H.;Hong,P.;Su,J.;Cui,Y.;Liu,X.EffectofsoftchainlengthandgenerationnumberonpropertiesofflexiblehyperbranchedpolyurethaneacrylateanditsUV-curedfilm.Prog. Org. Coat.2018,114,216−222..
Sirrine,J.M.;Meenakshisundaram,V.;Moon,N.G.;Scott,P.J.;Mondschein,R.J.;Weiseman,T.F.;Williams,C.B.;Long,T.E.Functionalsiloxaneswithphoto-activated,simultaneouschainextensionandcrosslinkingforlithography-based3Dprinting.Polymer2018,152,25−34..
0
Views
7
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution