
FOLLOWUS
a.Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
b.University of Chinese Academy of Sciences, Beijing 100049, China
c.State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
y.lin@mail.buct.edu.cn (Y.L.)
yanqiao@iccas.ac.cn (Y.Q.)
Published:01 September 2022,
Published Online:24 June 2022,
Received:16 March 2022,
Revised:12 April 2022,
Accepted:15 April 2022
Scan QR Code
Li, F.; Lin, Y.; Qiao, Y. Regulating FUS liquid-liquid phase separation via specific metal recognition. Chinese J. Polym. Sci. 2022, 40, 1043–1049
Fen Li, Yiyang Lin, Yan Qiao. Regulating FUS Liquid-Liquid Phase Separation
Li, F.; Lin, Y.; Qiao, Y. Regulating FUS liquid-liquid phase separation via specific metal recognition. Chinese J. Polym. Sci. 2022, 40, 1043–1049 DOI: 10.1007/s10118-022-2763-8.
Fen Li, Yiyang Lin, Yan Qiao. Regulating FUS Liquid-Liquid Phase Separation
We design a fused in sarcoma (FUS)-derived protein by fusing a hexhistidine-tag to the low complexity domain of FUS
which undergoes liquid-liquid phase separation in the presence of metal ions. Regulation of dynamic coacervation of FUS with the competitive binding strategy offers a possibility to design protocells as a controlled release system.
Liquid-liquid phase separation (LLPS) or biomolecular condensation that leads to formation of membraneless organelles plays a critical role in many biochemical processes. Mechanism study of regulating LLPS is therefore central to the understanding of protein aggregation and disease-relevant process. We report a fused in sarcoma protein (FUS)-derived low complexity (LC) sequence that undergoes LLPS in the presence of metal ions. The LC protein was constructed by fusing a hexhistidine-tag to the
N
-terminal low complexity domain (the residues 1–165 in QGSY-rich segment) of FUS. Spontaneous condensation of the intrinsic disordered protein into coacervate droplets was observed in the presence of metal ions that chelate oligohistidine moieties to form protein matrix. We demonstrate the key role of metal ion-histidine coordination in governing LLPS behaviours and the fluidity of biomolecular condensates. By taking advantage of competitive binding using chelators
we show the possibility of regulating dynamic behaviors of disease-relevant protein droplets
and developing a potential approach towards controllable biological encapsulation/release.
FUSLiquid-liquid phase separationBiomolecular condensateMembraneless organellesProtocellsMetal coordination
Koga, S.; Williams, D. S.; Perriman, A. W.; Mann, S . Peptide-nucleotide microdroplets as a step towards a membrane-free protocell model . Nat. Chem. , 2011 . 3 720 -724 . DOI:10.1038/nchem.1110http://doi.org/10.1038/nchem.1110 .
Qiao, Y.; Li, M.; Qiu, D.; Mann, S . Response-retaliation behavior in synthetic protocell communities . Angew. Chem. Int. Ed. , 2019 . 58 17758 -17763 . DOI:10.1002/anie.201909313http://doi.org/10.1002/anie.201909313 .
Liu, Z.; Ji, Y.; Mu, W.; Liu, X.; Huang, L . Y.; Ding, T.; Qiao, Y. Coacervate microdroplets incorporating J-aggregates toward photoactive membraneless protocells . Chem. Commun. , 2022 . 58 2536 -2539 . DOI:10.1039/D1CC07113Khttp://doi.org/10.1039/D1CC07113K .
Ji, Y.; Mu, W.; Wu, H.; Qiao, Y . Directing transition of synthetic protocell models via physicochemical cues-triggered interfacial dynamic covalent chemistry . Adv. Sci. , 2021 . 8 e2101187 DOI:10.1002/advs.202101187http://doi.org/10.1002/advs.202101187 .
Jia, L.; Ji, Z.; Ji, Y. M.; Zhou, C.; Xing, G. W.; Qiao, Y . Design and fluorescence localization of lipid-rich domains in multiphase coacervate droplets based on AIE-active molecules . ChemSystemsChem , 2020 . 3 e2000044 .
Qiao, Y.; Li, M.; Booth, R.; Mann, S . Predatory behaviour in synthetic protocell communities . Nat. Chem. , 2017 . 9 110 -119 . DOI:10.1038/nchem.2617http://doi.org/10.1038/nchem.2617 .
Mu, W.; Ji, Z.; Zhou, M.; Wu, J.; Lin, Y.; Qiao, Y . Membrane-confined liquid-liquid phase separation toward artificial organelles . Sci. Adv. , 2021 . 7 eabf9000 DOI:10.1126/sciadv.abf9000http://doi.org/10.1126/sciadv.abf9000 .
A. I. Oparin, A. S. The origin of life on the earth. Academic Press, New York, 1957.
Yin, Y.; Niu, L.; Zhu, X.; Zhao, M.; Zhang, Z.; Mann, S.; Liang, D . Non-equilibrium behaviour in coacervate-based protocells under electric-field-induced excitation . Nat. Commun. , 2016 . 7 10658 DOI:10.1038/ncomms10658http://doi.org/10.1038/ncomms10658 .
Alberti, S.; Gladfelter, A.; Mittag, T . Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates . Cell , 2019 . 176 419 -434 . DOI:10.1016/j.cell.2018.12.035http://doi.org/10.1016/j.cell.2018.12.035 .
Iglesias-Artola, J. M.; Drobot, B.; Kar, M.; Fritsch, A. W.; Mutschler, H.; Dora Tang, T. Y.; Kreysing, M . Charge-density reduction promotes ribozyme activity in RNA-peptide coacervates via RNA fluidization and magnesium partitioning . Nat. Chem. , 2022 . 14 1 -10 . DOI:10.1038/s41557-021-00859-zhttp://doi.org/10.1038/s41557-021-00859-z .
Weber, S. C.; Brangwynne, C. P . Inverse size scaling of the nucleolus by a concentration-dependent phase transition . Curr. Biol. , 2015 . 25 641 -646 . DOI:10.1016/j.cub.2015.01.012http://doi.org/10.1016/j.cub.2015.01.012 .
Gall, J. G . The centennial of the Cajal body . Nat. Rev. Mol. Cell Biol. , 2003 . 4 975 -980 . DOI:10.1038/nrm1262http://doi.org/10.1038/nrm1262 .
Lamond, A. I.; Spector, D. L . Nuclear speckles: a model for nuclear organelles . Nat. Rev. Mol. Cell Biol. , 2003 . 4 605 -612 . DOI:10.1038/nrm1172http://doi.org/10.1038/nrm1172 .
Anderson, P.; Kedersha, N . Stress granules . Curr. Biol. , 2009 . 19 397 -398 . DOI:10.1016/j.cub.2009.03.013http://doi.org/10.1016/j.cub.2009.03.013 .
Decker, C. J.; Parker, R . P-bodies and stress granules: possible roles in the control of translation and mRNA degradation . Cold Spring Harb. Perspect. Biol. , 2012 . 4 a012286 DOI:10.1101/cshperspect.a012286http://doi.org/10.1101/cshperspect.a012286 .
Shin, Y.; Brangwynne, C. P . Liquid phase condensation in cell physiology and disease . Science , 2017 . 357 eaaf4382 DOI:10.1126/science.aaf4382http://doi.org/10.1126/science.aaf4382 .
Courtney, A . H.; Lo, W. L.; Weiss, A. TCR signaling: mechanisms of initiation and propagation . Trends Biochem. Sci. , 2018 . 43 108 -123 . DOI:10.1016/j.tibs.2017.11.008http://doi.org/10.1016/j.tibs.2017.11.008 .
Gibson, B. A.; Doolittle, L. K.; Schneider, M. W.; Jensen, L. E.; Gamarra, N.; Henry, L.; Gerlich, D. W.; Redding, S.; Rosen, M. K . Organization of chromatin by intrinsic and regulated phase separation . Cell , 2019 . 179 470 -484 . DOI:10.1016/j.cell.2019.08.037http://doi.org/10.1016/j.cell.2019.08.037 .
Sabari, B. R.; Dall’Agnese, A.; Boija, A.; Klein, I. A.; Coffey, E. L.; Shrinivas, K.; Abraham, B. J.; Hannett, N. M.; Zamudio, A. V.; Manteiga, J. C . Coactivator condensation at super-enhancers links phase separation and gene control . Science , 2018 . 361 eaar3958 DOI:10.1126/science.aar3958http://doi.org/10.1126/science.aar3958 .
Tang, T. D.; Hak, C. R. C.; Thompson, A. J.; Kuimova, M. K.; Williams, D.; Perriman, A. W.; Mann, S . Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model . Nat. Chem. , 2014 . 6 527 -533 . DOI:10.1038/nchem.1921http://doi.org/10.1038/nchem.1921 .
Aumiller, W. M.; Keating, C. D . Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles . Nat. Chem. , 2016 . 8 129 -137 . DOI:10.1038/nchem.2414http://doi.org/10.1038/nchem.2414 .
Mason, A. F.; Buddingh’, B. C.; Williams, D. S.; Van Hest, J. C . Hierarchical self-assembly of a copolymer-stabilized coacervate protocell . J. Am. Chem. Soc. , 2017 . 139 17309 -17312 . DOI:10.1021/jacs.7b10846http://doi.org/10.1021/jacs.7b10846 .
Love, C.; Steinkühler, J.; Gonzales, D. T.; Yandrapalli, N.; Robinson, T.; Dimova, R.; Tang, T. Y. D . Reversible pH-responsive coacervate formation in lipid vesicles activates dormant enzymatic reactions . Angew. Chem. Int. Ed. , 2020 . 59 5950 -5957 . DOI:10.1002/ange.201914893http://doi.org/10.1002/ange.201914893 .
Simon, J. R.; Eghtesadi, S . A.; Dzuricky, M.; You, L.; Chilkoti, A. Engineered ribonucleoprotein granules inhibit translation in protocells . Mol. Cell , 2019 . 75 66 -75 . DOI:10.1016/j.molcel.2019.05.010http://doi.org/10.1016/j.molcel.2019.05.010 .
Peeples, W.; Rosen, M. K . Mechanistic dissection of increased enzymatic rate in a phase-separated compartment . Nat. Chem. Biol. , 2021 . 17 693 -702 . DOI:10.1038/s41589-021-00801-xhttp://doi.org/10.1038/s41589-021-00801-x .
Abbas, M.; Lipiński, W. P.; Nakashima, K. K.; Huck, W. T.; Spruijt, E . A short peptide synthon for liquid-liquid phase separation . Nat. Chem. , 2021 . 13 1046 -1054 . DOI:10.1038/s41557-021-00788-xhttp://doi.org/10.1038/s41557-021-00788-x .
Fung, H. Y . J.; Birol, M.; Rhoades, E. IDPs in macromolecular complexes: the roles of multivalent interactions in diverse assemblies . Curr. Opin. Struct. Biol. , 2018 . 49 36 -43 . DOI:10.1016/j.sbi.2017.12.007http://doi.org/10.1016/j.sbi.2017.12.007 .
Martin, E. W.; Mittag, T . Relationship of sequence and phase separation in protein low-complexity regions . Biochemistry , 2018 . 57 2478 -2487 . DOI:10.1021/acs.biochem.8b00008http://doi.org/10.1021/acs.biochem.8b00008 .
Murthy, A. C.; Tang, W. S.; Jovic, N.; Janke, A. M.; Seo, D. H.; Perdikari, T. M.; Mittal, J.; Fawzi, N. L . Molecular interactions contributing to FUS SYGQ LC-RGG phase separation and co-partitioning with RNA polymerase II heptads . Nat. Struct. Mol. Biol. , 2021 . 28 923 -935 . DOI:10.1038/s41594-021-00677-4http://doi.org/10.1038/s41594-021-00677-4 .
Wang, J.; Choi, J.-M.; Holehouse, A. S.; Lee, H . O.; Zhang, X.; Jahnel, M.; Maharana, S.; Lemaitre, R.; Pozniakovsky, A.; Drechsel, D. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins . Cell , 2018 . 174 688 -699 . DOI:10.1016/j.cell.2018.06.006http://doi.org/10.1016/j.cell.2018.06.006 .
Sreedharan, J.; Blair, I. P.; Tripathi, V. B.; Hu, X.; Vance, C.; Rogelj, B.; Ackerley, S.; Durnall, J. C.; Williams, K. L.; Buratti, E . TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis . Science , 2008 . 319 1668 -1672 . DOI:10.1126/science.1154584http://doi.org/10.1126/science.1154584 .
Neumann, M.; Sampathu, D. M.; Kwong, L. K.; Truax, A. C.; Micsenyi, M. C.; Chou, T. T.; Bruce, J.; Schuck, T.; Grossman, M.; Clark, C. M . Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis . Science , 2006 . 314 130 -133 . DOI:10.1126/science.1134108http://doi.org/10.1126/science.1134108 .
Gu, J.; Wang, C.; Hu, R.; Li, Y.; Zhang, S.; Sun, Y.; Wang, Q.; Li, D.; Fang, Y.; Liu, C . Hsp70 chaperones TDP-43 in dynamic, liquid-like phase and prevents it from amyloid aggregation . Cell Res. , 2021 . 31 1024 -1027 . DOI:10.1038/s41422-021-00526-5http://doi.org/10.1038/s41422-021-00526-5 .
Guo, T.; Noble, W.; Hanger, D. P . Roles of tau protein in health and disease . Acta Neuropathologica , 2017 . 133 665 -704 . DOI:10.1007/s00401-017-1707-9http://doi.org/10.1007/s00401-017-1707-9 .
Zhang, S.; Liu, Y. Q.; Jia, C.; Lim, Y . J.; Feng, G.; Xu, E.; Long, H.; Kimura, Y.; Tao, Y.; Zhao, C. Mechanistic basis for receptor-mediated pathological α-synuclein fibril cell-to-cell transmission in Parkinson's disease . Proc. Natl. Acad. Sci. U.S.A. , 2021 . 118 e2011196118 DOI:10.1073/pnas.2011196118http://doi.org/10.1073/pnas.2011196118 .
Sun, Y.; Hou, S.; Zhao, K.; Long, H.; Liu, Z.; Gao, J.; Zhang, Y.; Su, X . D.; Li, D.; Liu, C. Cryo-EM structure of full-length α-synuclein amyloid fibril with Parkinson’s disease familial A53T mutation . Cell Res. , 2020 . 30 360 -362 . DOI:10.1038/s41422-020-0299-4http://doi.org/10.1038/s41422-020-0299-4 .
Liu, Z.; Zhang, S.; Gu, J.; Tong, Y.; Li, Y.; Gui, X.; Long, H.; Wang, C.; Zhao, C.; Lu, J . Hsp27 chaperones FUS phase separation under the modulation of stress-induced phosphorylation . Nat. Struct. Mol. Biol. , 2020 . 27 363 -372 . DOI:10.1038/s41594-020-0399-3http://doi.org/10.1038/s41594-020-0399-3 .
Luo, F.; Gui, X.; Zhou, H.; Gu, J.; Li, Y.; Liu, X.; Zhao, M.; Li, D.; Li, X.; Liu, C. . Atomic structures of FUS LC domain segments reveal bases for reversible amyloid fibril formation . Nat. Struct. Mol. Biol. , 2018 . 25 341 -346 . DOI:10.1038/s41594-018-0050-8http://doi.org/10.1038/s41594-018-0050-8 .
Patel, A.; Lee, H. O.; Jawerth, L.; Maharana, S.; Jahnel, M.; Hein, M. Y.; Stoynov, S.; Mahamid, J.; Saha, S.; Franzmann, T. M . A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation . Cell , 2015 . 162 1066 -1077 . DOI:10.1016/j.cell.2015.07.047http://doi.org/10.1016/j.cell.2015.07.047 .
Masuda, A.; Takeda, J.-i.; Okuno, T.; Okamoto, T.; Ohkawara, B.; Ito, M.; Ishigaki, S.; Sobue, G.; Ohno, K . Position-specific binding of FUS to nascent RNA regulates mRNA length . Genes Dev. , 2015 . 29 1045 -1057 . DOI:10.1101/gad.255737.114http://doi.org/10.1101/gad.255737.114 .
Dini Modigliani, S.; Morlando, M.; Errichelli, L.; Sabatelli, M.; Bozzoni, I . An ALS-associated mutation in the FUS 3′-UTR disrupts a microRNA-FUS regulatory circuitry . Nat. Commun. , 2014 . 5 1 -7 . DOI:10.1038/ncomms5335http://doi.org/10.1038/ncomms5335 .
Levone, B. R.; Lenzken, S. C.; Antonaci, M.; Maiser, A.; Rapp, A.; Conte, F.; Reber, S.; Mechtersheimer, J.; Ronchi, A. E.; Mühlemann, O . FUS-dependent liquid-liquid phase separation is important for DNA repair initiation . J. Cell Biol. , 2021 . 220 e202008030 DOI:10.1083/jcb.202008030http://doi.org/10.1083/jcb.202008030 .
Shelkovnikova, T. A.; Robinson, H. K.; Connor-Robson, N.; Buchman, V. L . Recruitment into stress granules prevents irreversible aggregation of FUS protein mislocalized to the cytoplasm . Cell Cycle , 2013 . 12 3383 -3391 . DOI:10.4161/cc.26241http://doi.org/10.4161/cc.26241 .
Deng, H.; Gao, K.; Jankovic, J . The role of FUS gene variants in neurodegenerative diseases . Nat. Rev. Neurol. , 2014 . 10 337 -348 . DOI:10.1038/nrneurol.2014.78http://doi.org/10.1038/nrneurol.2014.78 .
Hofweber, M.; Dormann, D . Friend or foe—post-translational modifications as regulators of phase separation and RNP granule dynamics . J. Biol. Chem. , 2019 . 294 7137 -7150 . DOI:10.1074/jbc.TM118.001189http://doi.org/10.1074/jbc.TM118.001189 .
Kang, J.; Lim, L.; Song, J. . ATP enhances at low concentrations but dissolves at high concentrations liquid-liquid phase separation (LLPS) of ALS/FTD-causing FUS . Biochem. Biophys. Res. Commun. , 2018 . 504 545 -551 . DOI:10.1016/j.bbrc.2018.09.014http://doi.org/10.1016/j.bbrc.2018.09.014 .
Fang, M. Y.; Markmiller, S.; Vu, A. Q.; Javaherian, A.; Dowdle, W. E.; Jolivet, P.; Bushway, P. J.; Castello, N. A.; Baral, A.; Chan, M. Y.; Linsley, J. W.; Linsley, D.; Mercola, M.; Finkbeiner, S.; Lecuyer, E.; Lewcock, J. W.; Yeo, G. W . Small-molecule modulation of TDP-43 recruitment to stress granules prevents persistent TDP-43 accumulation in ALS/FTD . Neuron , 2019 . 103 802 -819 . DOI:10.1016/j.neuron.2019.05.048http://doi.org/10.1016/j.neuron.2019.05.048 .
Babinchak, W. M.; Dumm, B. K.; Venus, S.; Boyko, S.; Putnam, A. A.; Jankowsky, E.; Surewicz, W. K . Small molecules as potent biphasic modulators of protein liquid-liquid phase separation . Nat. Commun. , 2020 . 11 1 -15 . DOI:10.1038/s41467-019-13993-7http://doi.org/10.1038/s41467-019-13993-7 .
Guo, L.; Kim, H. J.; Wang, H.; Monaghan, J.; Freyermuth, F.; Sung, J. C.; O’Donovan, K.; Fare, C . M.; Diaz, Z.; Singh, N. Nuclear-import receptors reverse aberrant phase transitions of RNA-binding proteins with prion-like domains . Cell , 2018 . 173 677 -692 . DOI:10.1016/j.cell.2018.03.002http://doi.org/10.1016/j.cell.2018.03.002 .
Yang, L.; Gal, J.; Chen, J.; Zhu, H . Self-assembled FUS binds active chromatin and regulates gene transcription . Proc. Natl. Acad. Sci. U. S. A. , 2014 . 111 17809 -17814 . DOI:10.1073/pnas.1414004111http://doi.org/10.1073/pnas.1414004111 .
Krainer, G.; Welsh, T. J.; Joseph, J. A.; Espinosa, J. R.; Wittmann, S.; de Csillery, E.; Sridhar, A.; Toprakcioglu, Z.; Gudiskyte, G.; Czekalska, M. A.; Arter, W. E.; Guillen-Boixet, J.; Franzmann, T. M.; Qamar, S.; George-Hyslop, P. S.; Hyman, A. A.; Collepardo-Guevara, R.; Alberti, S.; Knowles, T. P. J . Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions . Nat. Commun. , 2021 . 12 1 -14 . DOI:10.1038/s41467-020-20314-whttp://doi.org/10.1038/s41467-020-20314-w .
Shi, C. Y.; Zhang, Q.; Tian, H.; Qu, D. H . Supramolecular adhesive materials from small-molecule self-assembly . SmartMat , 2020 . 1 e1012 DOI:10.1002/smm2.1012http://doi.org/10.1002/smm2.1012 .
Mészáros, B.; Erdős, G.; Dosztányi, Z . IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding . Nucleic acids Res. , 2018 . 46 329 -337 . DOI:10.1093/nar/gky384http://doi.org/10.1093/nar/gky384 .
Qamar, S.; Wang, G.; Randle, S. J.; Ruggeri, F. S.; Varela, J. A.; Lin, J. Q.; Phillips, E . C.; Miyashita, A.; Williams, D.; Ströhl, F. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions . Cell , 2018 . 173 720 -734 . DOI:10.1016/j.cell.2018.03.056http://doi.org/10.1016/j.cell.2018.03.056 .
Fvan Eldijk, M. B.; Schoonen, L.; Cornelissen, J. J.; Nolte, R. J.; van Hest, J. C . Metal ion-induced self-assembly of a multi-responsive block copolypeptide into well-defined nanocapsules . Small , 2016 . 12 2476 -2483 . DOI:10.1002/smll.201503889http://doi.org/10.1002/smll.201503889 .
0
Views
37
Downloads
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621