FOLLOWUS
a.School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
b.Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
c.School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
d.School of Materials Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
angelinelu@sjtu.edu.cn (J.Y.L.)
cmdong@sjtu.edu.cn (C.M.D.)
Published:01 September 2022,
Published Online:24 June 2022,
Received:10 March 2022,
Revised:23 March 2022,
Accepted:24 March 2022
Scan QR Code
Teng, L.; Shao, Z. W.; He, Y. S.; Lu, J. Y.; Zou, D. R.; Feng, C. L.; Dong, C. M. A glycosylated and catechol-crosslinked ε-polylysine hydrogel: simple preparation and excellent wound hemostasis and healing properties. Chinese J. Polym. Sci. 2022, 40, 1110–1119
Lin Teng, Zheng-Wei Shao, Yu-Shi He, et al. A Glycosylated and Catechol-crosslinked
Teng, L.; Shao, Z. W.; He, Y. S.; Lu, J. Y.; Zou, D. R.; Feng, C. L.; Dong, C. M. A glycosylated and catechol-crosslinked ε-polylysine hydrogel: simple preparation and excellent wound hemostasis and healing properties. Chinese J. Polym. Sci. 2022, 40, 1110–1119 DOI: 10.1007/s10118-022-2741-1.
Lin Teng, Zheng-Wei Shao, Yu-Shi He, et al. A Glycosylated and Catechol-crosslinked
Inspired by bio-functions and microstructures of extracellular matrixes and mussel foot proteins
we constructed the glucose-/catechol-functionalized ε-polylysine-based hydrogels
which presented excellent hemostasis and wound healing performance
and the hydroproline level within 14 days is comparable to that in normal skins. The cooperative glycosylation and catechol-modification make commercial ε-polylysine suitable for constructing high performance wound hemostats and dressings with potential transition applications.
Commercial tissue adhesives have been widely applied in wound hemostats and dressings while enhancing the hemostasis and healing capabilities is challenging to meet clinical needs. Herein
we designed the glucose- and catechol-functionalized derivatives from commercial
ε
-polylysine (EPL) and prepared the hydrogels by simple amidation and catechol-crosslinking reactions
which have larger swelling ratios of 220%−240%
suitable microporous size of about 6−8 μm
and tissue adhesion strength of about 20−40 kPa. The hemolysis
cytotoxicity
and cellular double-staining assays indicate that those hydrogels had good biocompatibility and the H-3 hydrogel with higher glucose content gave a lower hemolysis ratio of 0.73%±0.14%. The blood-clotting index
blood cell attachment and adhesion studies showed those hydrogels had fast blood-coagulation
resulting in excellent hemostasis performance with a short hemostatic time of 38−46 s and less blood loss of 19%−34% in a liver hemorrhage model. A full-thickness rat-skin defect model further demonstrates that the H-3 hydrogel achieved fast wound healing with a wound closure of 70.0%±2.7% on postoperative day 7 and nearly full closure on day 14. Remarkably
the hydroproline level that denotes the collagen production reached a higher one of 7.24±0.55 μg/mg comparable to that in normal skins on day 14
evidencing the wound healing was close to completion in the H-3 treatment. Consequently
this work provides a simple method to construct a glycosylated and catechol-functionalized hydrogel platform from commercial EPL
holding translational potentials in wound hemostats and dressings.
Polylysine hydrogelGlycosylationMussel-mimeticHemostasisWound dressing
Zhao, Y.; Song, S.; Ren, X.; Zhang, J.; Lin, Q.; Zhao, Y. Supramolecular adhesive hydrogels for tissue engineering applications. Chem. Rev. 2022, DOI: 10.1021/acs.chemrev.1c00815.
Zuo, X. L.; Wang, S. F.; Le, X . X.; Lu, W.; Chen, T. Self-healing polymeric hydrogels: toward multifunctional soft smart materials . Chinese J. Polym. Sci. , 2021 . 39 1262 -1280 . DOI:10.1007/s10118-021-2612-1http://doi.org/10.1007/s10118-021-2612-1 .
Chen, K.; Wu, Z.; Liu, Y.; Yuan, Y.; Liu, C. Injectable double-crosslinked adhesive hydrogels with high mechanical resilience and effective energy dissipation for joint wound treatment. Adv. Funct. Mater. 2022, DOI: 10.1002/adfm.202109687.
Pourshahrestani, S.; Zeimaran, E.; Kadri, N. A.; Mutlu, N.; Boccaccini, A. R . Polymeric hydrogel systems as emerging biomaterial platforms to enable hemostasis and wound healing . Adv. Healthc. Mater. , 2020 . 9 e2000905 DOI:10.1002/adhm.202000905http://doi.org/10.1002/adhm.202000905 .
Nam, S.; Mooney, D . Polymeric tissue adhesives . Chem. Rev. , 2021 . 121 11336 -11384 . DOI:10.1021/acs.chemrev.0c00798http://doi.org/10.1021/acs.chemrev.0c00798 .
Zhang, K.; Chen, X.; Xue, Y.; Lin, J.; Liang, X.; Zhang, J.; Zhang, J.; Chen, G.; Cai, C.; Liu, J. Tough hydrogel bioadhesives for sutureless wound sealing, hemostasis and biointerfaces. Adv. Funct. Mater. 2022, DOI: 10.1002/adfm.202111465.
Yuk, H.; Varela, C. E.; Nabzdyk, C. S.; Mao, X.; Padera, R. F.; Roche, E. T.; Zhao, X . Dry double-sided tape for adhesion of wet tissues and devices . Nature , 2019 . 575 169 -174 . DOI:10.1038/s41586-019-1710-5http://doi.org/10.1038/s41586-019-1710-5 .
Wang, R.; Li, J.; Chen, W.; Xu, T.; Yun, S.; Xu, Z.; Xu, Z.; Sato, T.; Chi, B.; Xu, H . A biomimetic mussel-inspired ε-poly-l-lysine hydrogel with robust tissue-anchor and anti-infection capacity . Adv. Funct. Mater. , 2017 . 27 1604894 DOI:10.1002/adfm.201604894http://doi.org/10.1002/adfm.201604894 .
Bai, Q.; Teng, L.; Zhang, X.; Dong, C. M . Multifunctional single-component polypeptide hydrogels: the gelation mechanism, superior biocompatibility, high performance hemostasis, and scarless wound healing . Adv. Healthc. Mater. , 2022 . 11 e2101809 DOI:10.1002/adhm.202101809http://doi.org/10.1002/adhm.202101809 .
Teng, L.; Shao, Z.; Bai, Q.; Zhang, X.; He, Y. S.; Lu, J.; Zou, D.; Feng, C.; Dong, C. M . Biomimetic glycopolypeptide hydrogels with tunable adhesion and microporous structure for fast hemostasis and highly efficient wound healing . Adv. Funct. Mater. , 2021 . 31 2105628 DOI:10.1002/adfm.202105628http://doi.org/10.1002/adfm.202105628 .
Wu, S. J.; Yuk, H.; Wu, J.; Nabzdyk, C. S.; Zhao, X . A Multifunctional origami patch for minimally invasive tissue sealing . Adv. Mater. , 2021 . 33 e2007667 DOI:10.1002/adma.202007667http://doi.org/10.1002/adma.202007667 .
Yuk, H.; Wu, J.; Sarrafian, T. L.; Mao, X.; Varela, C. E.; Roche, E. T.; Griffiths, L. G.; Nabzdyk, C. S.; Zhao, X . Rapid and coagulation-independent haemostatic sealing by a paste inspired by barnacle glue . Nat. Biomed. Eng. , 2021 . 5 1131 -1142 . DOI:10.1038/s41551-021-00769-yhttp://doi.org/10.1038/s41551-021-00769-y .
Shi, J.; Yu, L.; Ding, J . PEG-based thermosensitive and biodegradable hydrogels . Acta Biomater. , 2021 . 128 42 -59 . DOI:10.1016/j.actbio.2021.04.009http://doi.org/10.1016/j.actbio.2021.04.009 .
Wang, Y. Q.; Dou, X. Y.; Wang, H. F.; Wang, X.; Wu, D. C . Dendrimer-based hydrogels with controlled drug delivery property for tissue adhesion . Chinese J. Polym. Sci. , 2021 . 39 1421 -1430 . DOI:10.1007/s10118-021-2584-1http://doi.org/10.1007/s10118-021-2584-1 .
Xue, B.; Gu, J.; Li, L.; Yu, W.; Yin, S.; Qin, M.; Jiang, Q.; Wang, W.; Cao, Y . Hydrogel tapes for fault-tolerant strong wet adhesion . Nat. Commun. , 2021 . 12 7156 DOI:10.1038/s41467-021-27529-5http://doi.org/10.1038/s41467-021-27529-5 .
Fichman, G.; Andrews, C.; Patel, N. L.; Schneider, J. P . Antibacterial gel coatings inspired by the cryptic function of a mussel byssal peptide . Adv. Mater. , 2021 . 33 e2103677 DOI:10.1002/adma.202103677http://doi.org/10.1002/adma.202103677 .
Liang, Y.; Li, Z.; Huang, Y.; Yu, R.; Guo, B . Dual-dynamic-bond cross-linked antibacterial adhesive hydrogel sealants with on-demand removability for post-wound-closure and infected wound healing . ACS Nano , 2021 . 15 7078 -7093 . DOI:10.1021/acsnano.1c00204http://doi.org/10.1021/acsnano.1c00204 .
Ma, C.; Sun, J.; Li, B.; Feng, Y.; Sun, Y.; Xiang, L.; Wu, B.; Xiao, L.; Liu, B.; Petrovskii, V . S.; Bin, L.; Zhang, J.; Wang, Z.; Li, H.; Zhang, L.; Li, J.; Wang, F.; Gstl, R.; Potemkin, II; Chen, D.; Zeng, H.; Zhang, H.; Liu, K.; Herrmann, A. Ultra-strong bio-glue from genetically engineered polypeptides . Nat. Commun. , 2021 . 12 3613 DOI:10.1038/s41467-021-23117-9http://doi.org/10.1038/s41467-021-23117-9 .
Bevilacqua, M. P.; Huang, D. J.; Wall, B. D.; Lane, S. J.; Edwards, C. K., 3rd; Hanson, J. A.; Benitez, D.; Solomkin, J. S.; Deming, T. J . Amino acid block copolymers with broad antimicrobial activity and barrier properties . Macromol. Biosci. , 2017 . 17 1600492 DOI:10.1002/mabi.201600492http://doi.org/10.1002/mabi.201600492 .
Xu, W. K.; Tang, J. Y.; Yuan, Z.; Cai, C. Y.; Chen, X. B.; Cui, S. Q.; Liu, P.; Yu, L.; Cai, K. Y.; Ding, J. D . Accelerated cutaneous wound healing using an injectable teicoplanin-loaded PLGA-PEG-PLGA thermogel dressing . Chinese J. Polym. Sci. , 2019 . 37 548 -559 . DOI:10.1007/s10118-019-2212-5http://doi.org/10.1007/s10118-019-2212-5 .
Lu, D.; Wang, H.; Li, T . e.; Li, Y.; Wang, X.; Niu, P.; Guo, H.; Sun, S.; Wang, X.; Guan, X.; Ma, H.; Lei, Z. Versatile surgical adhesive and hemostatic materials: synthesis, properties, and application of thermoresponsive polypeptides . Chem. Mater. , 2017 . 29 5493 -5503 . DOI:10.1021/acs.chemmater.7b00255http://doi.org/10.1021/acs.chemmater.7b00255 .
Li, S.; Chen, N.; Li, X.; Li, Y.; Xie, Z.; Ma, Z.; Zhao, J.; Hou, X.; Yuan, X . Bioinspired double-dynamic-bond crosslinked bioadhesive enables post-wound closure care . Adv. Funct. Mater. , 2020 . 20 2000130 .
Bonduelle, C.; Lecommandoux, S . Synthetic glycopolypeptides as biomimetic analogues of natural glycoproteins . Biomacromolecules , 2013 . 14 2973 -2983 . DOI:10.1021/bm4008088http://doi.org/10.1021/bm4008088 .
Parani, M.; Lokhande, G.; Singh, A.; Gaharwar, A. K . Engineered nanomaterials for infection control and healing acute and chronic wounds . ACS Appl. Mater. Interfaces , 2016 . 8 10049 -10069 . DOI:10.1021/acsami.6b00291http://doi.org/10.1021/acsami.6b00291 .
Gao, Y.; Li, Z.; Huang, J.; Zhao, M.; Wu, J . In situ formation of injectable hydrogels for chronic wound healing . J. Mater. Chem. B , 2020 . 8 8768 -8780 . DOI:10.1039/D0TB01074Jhttp://doi.org/10.1039/D0TB01074J .
Wang, D.; Yang, X.; Liu, Q.; Yu, L.; Ding, J . Enzymatically cross-linked hydrogels based on a linear poly(ethylene glycol) analogue for controlled protein release and 3D cell culture . J. Mater. Chem. B , 2018 . 6 6067 -6079 . DOI:10.1039/C8TB01949Ehttp://doi.org/10.1039/C8TB01949E .
Ren, K.; Li, B.; Xu, Q.; Xiao, C.; He, C.; Li, G.; Chen, X . Enzymatically crosslinked hydrogels based on linear poly(ethylene glycol) polymer: performance and mechanism . Polym. Chem. , 2017 . 8 7017 -7024 . DOI:10.1039/C7PY01597Fhttp://doi.org/10.1039/C7PY01597F .
Zhang, K.; Feng, Q.; Fang, Z.; Gu, L.; Bian, L . Structurally dynamic hydrogels for biomedical applications: pursuing a fine balance between macroscopic stability and microscopic dynamics . Chem. Rev. , 2021 . 121 11149 -11193 . DOI:10.1021/acs.chemrev.1c00071http://doi.org/10.1021/acs.chemrev.1c00071 .
Poustchi, F.; Amani, H.; Ahmadian, Z.; Niknezhad, S. V.; Mehrabi, S.; Santos, H. A.; Shahbazi, M. A . Combination therapy of killing diseases by injectable hydrogels: from concept to medical applications . Adv. Healthc. Mater. , 2020 . 10 2001571 .
Guo, B.; Dong, R.; Liang, Y.; Li, M . Haemostatic materials for wound healing applications . Nat. Rev. Chem. , 2021 . 5 773 -791 . DOI:10.1038/s41570-021-00323-zhttp://doi.org/10.1038/s41570-021-00323-z .
Huang, Y.; Zhao, X.; Zhang, Z.; Liang, Y.; Yin, Z.; Chen, B.; Bai, L.; Han, Y.; Guo, B . Degradable gelatin-based IPN cryogel hemostat for rapidly stopping deep noncompressible hemorrhage and simultaneously improving wound healing . Chem. Mater. , 2020 . 32 6595 -6610 . DOI:10.1021/acs.chemmater.0c02030http://doi.org/10.1021/acs.chemmater.0c02030 .
Yu, J.; Wang, K.; Fan, C.; Zhao, X.; Gao, J.; Jing, W.; Zhang, X.; Li, J.; Li, Y.; Yang, J.; Liu, W . An ultrasoft self-fused supramolecular polymer hydrogel for completely preventing postoperative tissue adhesion . Adv. Mater. , 2021 . 33 2008395 DOI:10.1002/adma.202008395http://doi.org/10.1002/adma.202008395 .
Cui, C.; Liu, W . Recent advances in wet adhesives: adhesion mechanism, design principle and applications . Prog. Polym. Sci. , 2021 . 116 101388 DOI:10.1016/j.progpolymsci.2021.101388http://doi.org/10.1016/j.progpolymsci.2021.101388 .
Maleki, A.; He, J.; Bochani, S.; Nosrati, V.; Shahbazi, M. A.; Guo, B . Multifunctional photoactive hydrogels for wound healing acceleration . ACS Nano , 2021 . 15 18895 -18930 . DOI:10.1021/acsnano.1c08334http://doi.org/10.1021/acsnano.1c08334 .
Zhang, J.; Zheng, Y.; Lee, J.; Hua, J.; Li, S.; Panchamukhi, A.; Yue, J.; Gou, X.; Xia, Z.; Zhu, L.; Wu, X . A pulsatile release platform based on photo-induced imine-crosslinking hydrogel promotes scarless wound healing . Nat. Commun. , 2021 . 12 1670 DOI:10.1038/s41467-021-21964-0http://doi.org/10.1038/s41467-021-21964-0 .
Xu, X.; Xia, X.; Zhang, K.; Rai, A.; Li, Z.; Zhao, P.; Wei, K.; Zou, L.; Yang, B.; Wong, W. K.; Chiu, P. W. Y.; Bian, L . Bioadhesive hydrogels demonstrating pH-independent and ultrafast gelation promote gastric ulcer healing in pigs . Sci. Trans. Med. , 2020 . 12 eaba8014 DOI:10.1126/scitranslmed.aba8014http://doi.org/10.1126/scitranslmed.aba8014 .
Ahmadian, Z.; Correia, A.; Hasany, M.; Figueiredo, P.; Dobakhti, F.; Eskandari, M. R.; Hosseini, S. H.; Abiri, R.; Khorshid, S.; Hirvonen, J.; Santos, H. A.; Shahbazi, M. A . A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for pH-responsive wound healing acceleration . Adv. Healthc. Mater. , 2020 . 10 2001122 DOI:10.1002/adhm.202001122http://doi.org/10.1002/adhm.202001122 .
Arno, M. C . Engineering the mammalian cell surface with synthetic polymers: strategies and applications . Macromol. Rapid Commun. , 2020 . 41 2000302 DOI:10.1002/marc.202000302http://doi.org/10.1002/marc.202000302 .
Xu, C.; Yu, B.; Qi, Y.; Zhao, N.; Xu, F. J . Versatile types of cyclodextrin-based nucleic acid delivery systems . Adv. Healthc. Mater. , 2020 . 10 2001183 .
Cheng, Y.; Zhao, L.; Li, Y.; Xu, T . Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives . Chem. Soc. Rev. , 2011 . 40 2673 DOI:10.1039/c0cs00097chttp://doi.org/10.1039/c0cs00097c .
Liu, C.; Liu, X.; Liu, C.; Wang, N.; Chen, H.; Yao, W.; Sun, G.; Song, Q.; Qiao, W . A highly efficient, in situ wet-adhesive dextran derivative sponge for rapid hemostasis . Biomaterials , 2019 . 205 23 -37 . DOI:10.1016/j.biomaterials.2019.03.016http://doi.org/10.1016/j.biomaterials.2019.03.016 .
0
Views
77
Downloads
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution