
a.State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
b.Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
c.Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
anzesheng@jlu.edu.cn
Scan for full text
Li, R. Y.; An, Z. S. Photoenzymatic RAFT emulsion polymerization with oxygen tolerance. Chinese J. Polym. Sci. 2021, 39, 1138–1145
Ruo-Yu Li, Ze-Sheng An. Photoenzymatic RAFT Emulsion Polymerization with Oxygen Tolerance. [J]. Chinese Journal of Polymer Science 39(9):1138-1145(2021)
Li, R. Y.; An, Z. S. Photoenzymatic RAFT emulsion polymerization with oxygen tolerance. Chinese J. Polym. Sci. 2021, 39, 1138–1145 DOI: 10.1007/s10118-021-2556-5.
Ruo-Yu Li, Ze-Sheng An. Photoenzymatic RAFT Emulsion Polymerization with Oxygen Tolerance. [J]. Chinese Journal of Polymer Science 39(9):1138-1145(2021) DOI: 10.1007/s10118-021-2556-5.
Photoenzymatic reversible addition-fragmenatation chain transfer (RAFT) emulsion polymerization, surfactant-free or ab initio, of various monomers is reported with oxygen tolerance. In surfactant-free emulsion polymerizatoin, poly(,N,N,-dimethylacrylamide)s were used as stabilizer blocks for emulsion polymerization of methyl acrylate, n-butyl acrylate and styrene, producing well-defined amphiphilic block copolymers, including those with an ultrahigh molecular weight, at quantitative conversions. The controlled character of surfactant-free emulsion polymerization was confirmed by kinetic studies, chain extension studies and GPC analyses. Temporal control was demonstrated by light ON/OFF experiments. In ab initio emulsion polymerization of methyl acrylate and methyl methacrylate, low-dispersity hydrophobic polymers were synthesized with predictable molecular weights. This study extends the monomer scope suitable for photoenzymatic RAFT polymerization from hydrophilic to hydrophobic monomers and demonstrates that oxygen-tolerance can be equally achieved for emulsion polymerization with excellent RAFT control.
Controlled radical polymerizationRAFTEmulsion polymerizationOxygen tolerancePhotoenzymatic polymerization
Anastasaki, A.; Nikolaou, V.; Nurumbetov, G.; Wilson, P.; Kempe, K.; Quinn, J. F.; Davis, T. P.; Whittaker, M. R.; Haddleton, D. M. . Cu(0)-mediated living radical polymerization: a versatile tool for materials synthesis . Chem. Rev. , 2016 . 116 835 -877 . DOI:10.1021/acs.chemrev.5b00191http://doi.org/10.1021/acs.chemrev.5b00191 .
Lodge, T. P. . Celebrating 50 years of macromolecules . Macromolecules , 2017 . 50 9525 -9527 . DOI:10.1021/acs.macromol.7b02507http://doi.org/10.1021/acs.macromol.7b02507 .
An, Z. . 100th Anniversary of macromolecular science viewpoint: achieving ultrahigh molecular weights with reversible deactivation radical polymerization . ACS Macro Lett. , 2020 . 9 350 -357 . DOI:10.1021/acsmacrolett.0c00043http://doi.org/10.1021/acsmacrolett.0c00043 .
Fan, G.; Dundas, C. M.; Graham, A. J.; Lynd, N. A.; Keitz, B. K. . Shewanella oneidensis as a living electrode for controlled radical polymerization . Proc. Natl. Acad. Sci. USA , 2018 . 115 4559 -4564 . DOI:10.1073/pnas.1800869115http://doi.org/10.1073/pnas.1800869115 .
Lv, F.; An, Z.; Wu, P. . Efficient access to inverse bicontinuous mesophases via polymerization-induced cooperative assembly . CCS Chem. , 2020 . 2 2211 -2222. .
Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. . Living free-radical polymerization by reversible addition−fragmentation chain transfer: the RAFT process . Macromolecules , 1998 . 31 5559 -5562 . DOI:10.1021/ma9804951http://doi.org/10.1021/ma9804951 .
Engelis, N. G.; Anastasaki, A.; Nurumbetov, G.; Truong, N. P.; Nikolaou, V.; Shegiwal, A.; Whittaker, M. R.; Davis, T. P.; Haddleton, D. M. . Sequence-controlled methacrylic multiblock copolymers via sulfur-free RAFT emulsion polymerization . Nat. Chem. , 2017 . 9 171 -178 . DOI:10.1038/nchem.2634http://doi.org/10.1038/nchem.2634 .
Zhao, Y.; Ma, M.; Lin, X.; Chen, M. . Photoorganocatalyzed divergent reversible-deactivation radical polymerization towards linear and branched fluoropolymers . Angew. Chem. Int. Ed. , 2020 . 59 21470 -21474 . DOI:10.1002/anie.202009475http://doi.org/10.1002/anie.202009475 .
Xu, J.; Jung, K.; Atme, A.; Shanmugam, S.; Boyer, C. . A robust and versatile photoinduced living polymerization of conjugated and unconjugated monomers and its oxygen tolerance . J. Am. Chem. Soc. , 2014 . 136 5508 -19 . DOI:10.1021/ja501745ghttp://doi.org/10.1021/ja501745g .
Gong, H.; Gu, Y.; Zhao, Y.; Quan, Q.; Han, S.; Chen, M. . Precise synthesis of ultra-high-molecular-weight fluoropolymers enabled by chain-transfer-agent differentiation under visible-light irradiation . Angew. Chem. Int. Ed. , 2020 . 59 919 -927 . DOI:10.1002/anie.201912698http://doi.org/10.1002/anie.201912698 .
Dadashi-Silab, S.; Atilla Tasdelen, M.; Yagci, Y. . Photoinitiated atom transfer radical polymerization: current status and future perspectives . J. Polym. Sci., Part A: Polym. Chem. , 2014 . 52 2878 -2888 . DOI:10.1002/pola.27327http://doi.org/10.1002/pola.27327 .
Hua, D.; Bai, R.; Lu, W.; Pan, C. . Dithiocarbamate mediated controlled/living free radical polymerization of methyl acrylate under 60Co γ-ray irradiation: conjugation effect of N-group . J. Polym. Sci., Part A: Polym. Chem. , 2004 . 42 5670 -5677 . DOI:10.1002/pola.20394http://doi.org/10.1002/pola.20394 .
An, Z.; Chen, C.; He, J.; Hong, C.; Li, Z.; Li, Z.; Liu, C.; Lv, X.; Qin, A.; Qu, C.; Tang, B. Z.; Tao, Y.; Wan, X.; Wang, G.; Wang, J.; Zheng, K.; Zou, W. . Research and development of polymer synthetic chemistry in China . Acta Polymerica Sinica (in Chinese) , 2019 . 50 1083 -1132. .
Shen, L.; Lu, Q.; Zhu, A.; Lv, X.; An, Z. . Photocontrolled RAFT polymerization mediated by a supramolecular catalyst . ACS Macro Lett. , 2017 . 6 625 -631 . DOI:10.1021/acsmacrolett.7b00343http://doi.org/10.1021/acsmacrolett.7b00343 .
Li, S.; Han, G.; Zhang, W. . Photoregulated reversible addition-fragmentation chain transfer (RAFT) polymerization . Polym. Chem. , 2020 . 11 1830 -1844 . DOI:10.1039/D0PY00054Jhttp://doi.org/10.1039/D0PY00054J .
Fors, B. P.; Hawker, C. J. . Control of a living radical polymerization of methacrylates by light . Angew. Chem. Int. Ed. , 2012 . 51 8850 -8853 . DOI:10.1002/anie.201203639http://doi.org/10.1002/anie.201203639 .
Liu, D.; Cai, W.; Zhang, L.; Boyer, C.; Tan, J. . Efficient photoinitiated polymerization-induced self-assembly with oxygen tolerance through dual-wavelength type I photoinitiation and photoinduced deoxygenation . Macromolecules , 2020 . 53 1212 -1223 . DOI:10.1021/acs.macromol.9b02710http://doi.org/10.1021/acs.macromol.9b02710 .
Nie, H.; Li, S.; Qian, S.; Han, Z.; Zhang, W. . Switchable reversible addition-fragmentation chain transfer (RAFT) polymerization with the assistance of azobenzenes . Angew. Chem. Int. Ed. , 2019 . 58 11449 -11453 . DOI:10.1002/anie.201904991http://doi.org/10.1002/anie.201904991 .
Jiang, K.; Han, S.; Ma, M.; Zhang, L.; Zhao, Y.; Chen, M. . Photoorganocatalyzed reversible-deactivation alternating copolymerization of chlorotrifluoroethylene and vinyl ethers under ambient conditions: facile access to main-chain fluorinated copolymers . J. Am. Chem. Soc. , 2020 . 142 7108 -7115 . DOI:10.1021/jacs.0c01016http://doi.org/10.1021/jacs.0c01016 .
Carmean, R. N.; Becker, T. E.; Sims, M. B.; Sumerlin, B. S. . Ultra-high molecular weights via aqueous reversible-deactivation radical polymerization . Chem , 2017 . 2 93 -101 . DOI:10.1016/j.chempr.2016.12.007http://doi.org/10.1016/j.chempr.2016.12.007 .
Yeow, J.; Chapman, R.; Gormley, A. J.; Boyer, C. . Up in the air: oxygen tolerance in controlled/living radical polymerisation . Chem. Soc. Rev. , 2018 . 47 4357 -4387 . DOI:10.1039/C7CS00587Chttp://doi.org/10.1039/C7CS00587C .
Parkatzidis, K.; Wang, H. S.; Truong, N. P.; Anastasaki, A. . Recent developments and future challenges in controlled radical polymerization: a 2020 update . Chem , 2020 . 6 1575 -1588 . DOI:10.1016/j.chempr.2020.06.014http://doi.org/10.1016/j.chempr.2020.06.014 .
Lv, C. N.; Li, N.; Du, Y. X.; Li, J. H.; Pan, X. C. . Activation and deactivation of chain-transfer agent in controlled radical polymerization by oxygen initiation and regulation . Chinese J. Polym. Sci. , 2020 . 38 1178 -1184 . DOI:10.1007/s10118-020-2441-7http://doi.org/10.1007/s10118-020-2441-7 .
Gurnani, P.; Perrier, S. . Controlled radical polymerization in dispersed systems for biological applications . Prog. Polym. Sci. , 2020 . 102 101209 DOI:10.1016/j.progpolymsci.2020.101209http://doi.org/10.1016/j.progpolymsci.2020.101209 .
Zetterlund, P. B.; Thickett, S. C.; Perrier, S.; Bourgeat-Lami, E.; Lansalot, M. . Controlled/living radical polymerization in dispersed systems: an update . Chem. Rev. , 2015 . 115 9745 -800 . DOI:10.1021/cr500625khttp://doi.org/10.1021/cr500625k .
Zhao, X.; Chen, M.; Zhang, W. G.; Wang, C. H.; Wang, F.; You, Y. Z.; Zhang, W. J.; Hong, C. Y. . Polymerization-induced self-assembly to produce prodrug nanoparticles with reduction-responsive camptothecin release and pH-responsive charge-reversible property . Macromol. Rapid Commun. , 2020 . 41 2000260 DOI:10.1002/marc.202000260http://doi.org/10.1002/marc.202000260 .
Zheng, J.; Wang, X.; An, Z. . Synthesis of oxidation responsive vesicles with different block sequences via raft polymerization-induced self-assembly . Acta Polymerica Sinica (in Chinese) , 2019 . 50 1167 -1176. .
Richardson, R. A. E.; Guimarães, T. R.; Khan, M.; Moad, G.; Zetterlund, P. B.; Perrier, S. . Low-dispersity polymers in ab initio emulsion polymerization: improved macroRAFT agent performance in heterogeneous media . Macromolecules , 2020 . 53 7672 -7683 . DOI:10.1021/acs.macromol.0c01311http://doi.org/10.1021/acs.macromol.0c01311 .
Stace, S. J.; Vanderspikken, J.; Howard, S. C.; Li, G.; Muir, B. W.; Fellows, C. M.; Keddie, D. J.; Moad, G. . Ab initio RAFT emulsion polymerization mediated by small cationic RAFT agents to form polymers with low molar mass dispersity . Polym. Chem. , 2019 . 10 5044 -5051 . DOI:10.1039/C9PY00893Dhttp://doi.org/10.1039/C9PY00893D .
Cornel, E. J.; Jiang, J.; Chen, S.; Du, J. . Principles and characteristics of polymerization-induced self-assembly with various polymerization techniques . CCS Chem. , 2020 . 2 2104 -2125. .
Wang, X.; Shen, L.; An, Z. . Dispersion polymerization in environmentally benign solvents via reversible deactivation radical polymerization . Prog. Polym. Sci. , 2018 . 83 1 -27 . DOI:10.1016/j.progpolymsci.2018.05.003http://doi.org/10.1016/j.progpolymsci.2018.05.003 .
Penfold, N. J. W.; Yeow, J.; Boyer, C.; Armes, S. P. . Emerging trends in polymerization-induced self-assembly . ACS Macro Lett. , 2019 . 8 1029 -1054 . DOI:10.1021/acsmacrolett.9b00464http://doi.org/10.1021/acsmacrolett.9b00464 .
Ning, Y.; Meldrum, F. C.; Armes, S. P. . Efficient occlusion of oil droplets within calcite crystals . Chem. Sci. , 2019 . 10 8964 -8972 . DOI:10.1039/C9SC03372Fhttp://doi.org/10.1039/C9SC03372F .
Ye, Q.; Huo, M.; Zeng, M.; Liu, L.; Peng, L.; Wang, X.; Yuan, J. . Photoinduced reversible worm-to-vesicle transformation of azo-containing block copolymer assemblies prepared by polymerization-induced self-assembly . Macromolecules , 2018 . 51 3308 -3314 . DOI:10.1021/acs.macromol.8b00340http://doi.org/10.1021/acs.macromol.8b00340 .
Man, S. K.; Wang, X.; Zheng, J. W.; An, Z. S. . Effect of butyl α-hydroxymethyl acrylate monomer structure on the morphology produced via aqueous emulsion polymerization-induced self-assembly . Chinese J. Polym. Sci. , 2019 . 38 9 -16. .
Luo, X.; An, Z. . Polymerization-induced self-assembly for the synthesis of poly(N,N-dimethylacrylamide)-b-poly(4-tert-butoxystyrene) particles with inverse bicontinuous phases . Macromol. Rapid Commun. , 2020 . 41 2000209 DOI:10.1002/marc.202000209http://doi.org/10.1002/marc.202000209 .
Cao, L.; Zhao, Q.; Liu, Q.; Ma, L.; Li, C.; Wang, X.; Cai, Y. . Electrostatic manipulation of triblock terpolymer nanofilm compartmentalization during aqueous photoinitiated polymerization-induced self-assembly . Macromolecules , 2020 . 53 2220 -2227 . DOI:10.1021/acs.macromol.0c00024http://doi.org/10.1021/acs.macromol.0c00024 .
Xiong, Q.; Zhang, X.; Wei, W.; Wei, G.; Su, Z. . Enzyme-mediated reversible deactivation radical polymerization for functional materials: principles, synthesis, and applications . Polym. Chem. , 2020 . 11 1673 -1690 . DOI:10.1039/D0PY00136Hhttp://doi.org/10.1039/D0PY00136H .
Liu, Z.; Lv, Y.; An, Z. . Enzymatic cascade catalysis for the synthesis of multiblock and ultrahigh-molecular-weight polymers with oxygen tolerance . Angew. Chem. Int. Ed. , 2017 . 56 13852 -13856 . DOI:10.1002/anie.201707993http://doi.org/10.1002/anie.201707993 .
Ishizuka, F.; Chapman, R.; Kuchel, R. P.; Coureault, M.; Zetterlund, P. B.; Stenzel, M. H. . Polymeric nanocapsules for enzyme stabilization in organic solvents . Macromolecules , 2018 . 51 438 -446 . DOI:10.1021/acs.macromol.7b02377http://doi.org/10.1021/acs.macromol.7b02377 .
Chapman, R.; Gormley, A. J.; Herpoldt, K. L.; Stevens, M. M. . Highly controlled open vessel raft polymerizations by enzyme degassing . Macromolecules , 2014 . 47 8541 -8547 . DOI:10.1021/ma5021209http://doi.org/10.1021/ma5021209 .
Schneiderman, D. K.; Ting, J. M.; Purchel, A. A.; Miranda, R.; Tirrell, M. V.; Reineke, T. M.; Rowan, S. J. . Open-to-air RAFT polymerization in complex solvents: from Whisky to Fermentation Broth . ACS Macro Lett. , 2018 . 7 406 -411 . DOI:10.1021/acsmacrolett.8b00069http://doi.org/10.1021/acsmacrolett.8b00069 .
Chapma, R.; Gormley, A. J.; Stenze, M. H.; Steven, M. M. . Combinatorial low-volume synthesis of well-defined polymers by enzyme degassing . Angew. Chem. Int. Ed. , 2016 . 55 4500 -4503 . DOI:10.1002/anie.201600112http://doi.org/10.1002/anie.201600112 .
Enciso, A. E.; Fu, L.; Russell, A. J.; Matyjaszewski, K. . A breathing atom-transfer radical polymerization: fully oxygen-tolerant polymerization inspired by aerobic respiration of cells . Angew. Chem. Int. Ed. , 2017 . 57 933 -936 . DOI:10.1002/anie.201711105http://doi.org/10.1002/anie.201711105 .
Oytun, F.; Kahveci, M. U.; Yagci, Y. . Sugar overcomes oxygen inhibition in photoinitiated free radical polymerization . J. Polym. Sci., Part A: Polym. Chem. , 2013 . 51 1685 -1689 . DOI:10.1002/pola.26554http://doi.org/10.1002/pola.26554 .
Tan, J.; Liu, D.; Bai, Y.; Huang, C.; Li, X.; He, J.; Xu, Q.; Zhang, L. . Enzyme-assisted photoinitiated polymerization-induced self-assembly: an oxygen-tolerant method for preparing block copolymer nano-objects in open vessels and multiwell plates . Macromolecules , 2017 . 50 5798 -5806 . DOI:10.1021/acs.macromol.7b01219http://doi.org/10.1021/acs.macromol.7b01219 .
Yu, L.; Zhang, Y.; Dai, X.; Xu, Q.; Zhang, L.; Tan, J. . Open-air preparation of cross-linked CO2-responsive polymer vesicles by enzyme-assisted photoinitiated polymerization-induced self-assembly . Chem. Commun. , 2019 . 55 11920 -11923 . DOI:10.1039/C9CC05812Ehttp://doi.org/10.1039/C9CC05812E .
Tan, J.; Dai, X.; Zhang, Y.; Yu, L.; Sun, H.; Zhang, L. . Photoinitiated polymerization-induced self-assembly via visible light-induced RAFT-mediated emulsion polymerization . ACS Macro Lett. , 2019 . 8 205 -212 . DOI:10.1021/acsmacrolett.9b00007http://doi.org/10.1021/acsmacrolett.9b00007 .
Zhou, F.; Li, R.; Wang, X.; Du, S.; An, Z. . Non-natural photoenzymatic controlled radical polymerization inspired by DNA photolyase . Angew. Chem. Int. Ed. , 2019 . 58 9479 -9484 . DOI:10.1002/anie.201904413http://doi.org/10.1002/anie.201904413 .
Liu, Z.; Wang, L.; Zhong, D. . Dynamics and mechanisms of DNA repair by photolyase . Phys. Chem. Chem. Phys. , 2015 . 17 11933 -11949 . DOI:10.1039/C4CP05286Bhttp://doi.org/10.1039/C4CP05286B .
Li, R.; An, Z. . Achieving ultrahigh molecular weights with diverse architectures for unconjugated monomers through oxygen-tolerant photoenzymatic RAFT polymerization . Angew. Chem. Int. Ed. , 2020 . 59 22258 -22264 . DOI:10.1002/anie.202010722http://doi.org/10.1002/anie.202010722 .
Wang, X.; Figg, C. A.; Lv, X.; Yang, Y.; Sumerlin, B. S.; An, Z. . Star architecture promoting morphological transitions during polymerization-induced self-assembly . ACS Macro Lett. , 2017 . 6 337 -342 . DOI:10.1021/acsmacrolett.7b00099http://doi.org/10.1021/acsmacrolett.7b00099 .
Yang, Y.; An, Z. . Visible light induced aqueous RAFT polymerization using a supramolecular perylene diimide/cucurbit[7]uril complex . Polym. Chem. , 2019 . 10 2801 -2811 . DOI:10.1039/C9PY00393Bhttp://doi.org/10.1039/C9PY00393B .
McKenzie, T. G.; Fu, Q.; Wong, E. H. H.; Dunstan, D. E.; Qiao, G. G. . Visible light mediated controlled radical polymerization in the absence of exogenous radical sources or catalysts . Macromolecules , 2015 . 48 3864 -3872 . DOI:10.1021/acs.macromol.5b00965http://doi.org/10.1021/acs.macromol.5b00965 .
Lv, F.; An, Z.; Wu, P. . What determines the formation of block copolymer nanotubes? . Macromolecules , 2020 . 53 367 -373 . DOI:10.1021/acs.macromol.9b01868http://doi.org/10.1021/acs.macromol.9b01868 .
Moreno, A.; Sipponen, M. H. . Biocatalytic nanoparticles for the stabilization of degassed single electron transfer-living radical pickering emulsion polymerizations . Nat. Commun. , 2020 . 11 5599 DOI:10.1038/s41467-020-19407-3http://doi.org/10.1038/s41467-020-19407-3 .
0
Views
4
Downloads
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621