a.Ministry of Education, Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science and Technology, Qingdao 266042, China,
b.College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
liuya_sdu@163.com (Y.L.)
zhangzhenxiu@qust.edu.cn (Z.X.Z.)
收稿:2025-09-22,
录用:2025-10-30,
网络出版:2026-01-16,
纸质出版:2026-02-05
Scan QR Code
Yu, S. P.; Liu, Y.; Hao, M. Y.; Zhang, X.; Zhang X.; Yuan, Y. C.; Zhang, Z. X. Ultrahigh Electromagnetic Interference shielding and integrated thermal sensing-encryption enabled by a honeycomb-inspired multifunctional foam. Chinese J. Polym. Sci. 2026, 44, 513–524
Shao-Peng Yu, Ya Liu, Ming-Yu Hao, et al. Ultrahigh Electromagnetic Interference Shielding and Integrated Thermal Sensing-encryption Enabled by a Honeycomb-inspired Multifunctional Foam[J]. Chinese Journal of Polymer Science, 2026, 44(2): 513-524.
Yu, S. P.; Liu, Y.; Hao, M. Y.; Zhang, X.; Zhang X.; Yuan, Y. C.; Zhang, Z. X. Ultrahigh Electromagnetic Interference shielding and integrated thermal sensing-encryption enabled by a honeycomb-inspired multifunctional foam. Chinese J. Polym. Sci. 2026, 44, 513–524 DOI: 10.1007/s10118-025-3493-5.
Shao-Peng Yu, Ya Liu, Ming-Yu Hao, et al. Ultrahigh Electromagnetic Interference Shielding and Integrated Thermal Sensing-encryption Enabled by a Honeycomb-inspired Multifunctional Foam[J]. Chinese Journal of Polymer Science, 2026, 44(2): 513-524. DOI: 10.1007/s10118-025-3493-5.
This bio-inspired composite foam
made using supercritical nitrogen foaming
offers excellent electromagnetic interference shielding (60.06 dB)
temperature sensing (TCR=−2.642 %/°C)
and mechanical properties
showing promise for flexible electronics
aerospace
and military applications.
With the rapid development of intelligent electronic and military equipment
multifunctional flexible materials that integrat electromagnetic interference (EMI) shielding
temperature sensing
and information encryption are urgently required. This study presents a bio-inspired hierarchical composite foam fabricated using supercritical nitrogen foaming technology. This material exhibits a honeycomb structure
with pore cell sizes controllable within a range of 30–92 µm by regulating the filler. The carbon fiber felt (CFf) provides efficient reflection of electromagnetic waves
while the chloroprene rubber/carbon fiber /carbon black foam facilitates both wave absorption and temperature monitoring through its optimized conductive network. This synergistic mechanism results in an EMI shielding effectiveness (SE) of 60.06 dB with excellent temperature sensing performance (The temperature coefficient of resistance (TCR) is −2.642%/°C) in the 24–70 °C range. Notably
the material has a thermal conductivity of up to 0.159 W/(m·K)
and the bio-inspired layered design enables information encryption
demonstrating the material's potential for secure communication applications. The foam also has tensile properties of up to 5.13 MPa and a tear strength of 33.02 N/mm. This biomimetic design overcomes the traditional limitations of flexible materials and provides a transformative solution for next-generation applications such as flexible electronics
aerospace systems and military equipment
which urgently need integrated electromagnetic protection
thermal management and information security.
[Shahzad, F., Alhabeb, M., Hatter, C. B., Anasori, B., Hong, S. M., Koo, C. M., Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science , 2016 , 353 , 1137−1140..
Ma, Z.; Xiang, X.; Shao, L.; Zhang, Y.; Gu, J. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 2022 , 61 , e202200705..
Yang, J.; Wang, H.; Zhang, Y.; Zhang, H.; Gu, J. Layered structural PBAT composite foams for efficient electromagnetic interference shielding. Nano-Micro Lett. 2024 , 16 , 31. .
Chen, M.; Zhu, J.; Zhang, K.; Zhou, H.; Gao, Y.; Fan, J.; Chen, R.; Wang, H. L. Carbon nanofiber/polyaniline composite aerogel with excellent electromagnetic interference shielding, low thermal conductivity, and extremely low heat release. Nano-Micro Lett. 2025 , 17 , 80..
[Iqbal, A.; Sambyal, P.; Koo, C. M. 2D MXenes for Electromagnetic Shielding, A Review. Adv. Funct. Mater ., 2020 , 30 , 2000883..
Tian, K.; Qin, T.; Li, Q.; Chen, C.; Dai, Z.; Wei, X.; Fu, Q.; Deng, H. Stretchable multifunctional polydimethylsiloxane composites with cage-like conductive architecture for integrated thermosensitive and electromagnetic interference shielding performance. Adv. Funct. Mater. 2024 , 34 , 2400288..
Chen, M., Li, M., Gao, Y., He, S., Zhan, J., Zhang, K., Huo, Y., Zhu, J., Zhou, H., Fan, J., Chen, R., Wang, H. L. Flexible and robust core–shell PANI/PVDF@PANI nanofiber membrane for high-performance electromagnetic interference shielding. Nano Lett. 2024 , 24 , 2643−2651..
Liang, C.; Huo, Q.; Qi, J.; Zhang, Y.; Liu, C.; Liu, Y.; Gu, J. Robust solid–solid phase change coating encapsulated glass fiber fabric with electromagnetic interference shielding for thermal management and message encryption. Adv. Funct. Mater. 2024 , 34 , 2409146..
[Liu, M.; Zhang, H.; Huang, X.; Zhang, Z.; Zhang, K.; Chen, Z.; Zhou, J.; Pan, L. An electric-magnetic dual-gradient composite film comprising MXene, hollow Fe 3 O 4 , and bacterial cellulose for high-performance EMI shielding and infrared camouflage. Adv. Funct. Mater . 2025 , 35 , 2419077..
Kong, C.; Li, X.; Shi, J.; Wang, H.; Li, C.; Huang, Y.; Jiang, S.; Wu, K.; Yang, L. Preparation of Ultra-Sensitive flexible temperature sensors with thermal responsive waterborne polyurethane for enhanced temperature sensing performance. Chem. Eng. J. 2024 , 496 , 154246..
Zhao, B.; Hamidinejad, M.; Wang, S.; Bai, P.; Che, R.; Zhang, R.; Park, C. B. Advances in electromagnetic shielding properties of composite foams. J. Mater. Chem. A 2021 , 9 , 8896−8949..
Yang, J.; Liao, X.; Wang, G.; Chen, J.; Guo, F.; Tang, W.; Wang, W.; Yan, Z.; Li, G. Gradient structure design of lightweight and flexible silicone rubber nanocomposite foam for efficient electromagnetic interference shielding. Chem. Eng. J. 2020 , 390 , 124589..
Wang, X.; Zou, F.; Zhao, Y.; Li, G.; Liao, X. Electromagnetic interference shielding composites and the foams with gradient structure obtained by selective distribution of MWCNTs into hard domains of thermoplastic polyurethane. Composites Part A 2024 , 176 , 107861..
Luo, H.; Zhou, X.; Ellingford, C.; Zhang, Y.; Chen, S.; Zhou, K.; Zhang, D.; Bowen, C. R.; Wan, C. Interface design for high energy density polymer nanocomposites. Chem. Soc. Rev. 2019 , 48 , 4424−4465..
[Sharif, F.; Arjmand, M.; Moud, A. A.; Sundararaj, U.; roberts, E. P. L. segregated hybrid poly(methyl methacrylate)/graphene/magnetite nanocomposites for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2017 , 9 , 14171−14179..
Yang, J.; Wang, H.; Zhang, H.; Lin, P.; Gao, H.; Xia, Y.; Liao, X. Multistage microcellular waterborne polyurethane composite with optionally low-reflection behavior for ultra-efficient electromagnetic interference shielding. J. Mater. Sci. Technol. 2025 , 208 , 132−140 ..
Chen, J.; Liao, X.; Xiao, W.; Yang, J.; Jiang, Q.; Li, G. Facile and green method to structure ultralow-threshold and lightweight polystyrene/MWCNT composites with segregated conductive networks for efficient electromagnetic interference shielding. ACS Sustain. Chem. Eng. 2019 , 7 , 9904−9915..
Zhang, Y.; Tian, W.; Liu, L.; Cheng, W.; Wang, W.; Liew, K. M.; Wang, B.; Hu, Y. Eco-friendly flameretardant and electromagnetic interference shielding cotton fabrics with multi-layered coatings. Chem. Eng. J. 2019 , 372 , 1077−1090..
Liu, M.; Wu, S.; Huang, R.; Shi, Y.; Wang, H.; Feng, Y.; Tang, L.; Gao, J.; Song, P.; Lai, Y. Construction of mechanically robust and fire safe thermoplastic polyurethane-based nanocomposites for electromagnetic interference shielding. Compos. Part A 2023 , 175 , 107818..
Chen, Q.; Zhang, K.; Huang, L.; Li, Y.; Yuan, Y. Reduced graphene Oxide/MXene composite foam with multilayer structure for electromagnetic interference shielding and heat insulation applications. Adv. Eng. Mater. 2022 , 24 , 2200098..
Ran, L.; Qiu, L.; Zhao, H.; Sun, F.; Chen, Z.; Zhao, L.; Yi, L.; Ji, X. Fabrication of MXene based sandwich-like films for excellent flexibility, electromagnetic interference shielding and thermal management. Compos. Part A 2023 , 173 , 107672..
Gong, S.; Sheng, X.; Li, X.; Sheng, M.; Wu, H.; Lu, X.; Qu, J. A Multifunctional flexible composite film with excellent multi-source driven thermal management, electromagnetic interference shielding, and fire safety performance, inspired by a “brick–mortar” sandwich structure. Adv. Funct. Mater. 2022 , 32 , 2200570..
Zhang, X., Wang, X., Lei, Z., Wang, L., Tian, M., Zhu, S., Xiao, H., Tang, X., Qu, L. Flexible MXene-decorated fabric with interwoven conductive networks for integrated joule heating, electromagnetic interference shielding, and strain sensing performances. ACS Appl. Mater. Interfaces 2020 , 12 , 14459−14467..
Hang, T.; Zhou, L.; Xu, C.; Chen, Y.; Shen, J.; Zheng, J.; Yang, P.; Li, X.; Luo, H.; Tong, G. High-performance wearable bimetallic nanowire-assisted composite foams for efficient electromagnetic interference shielding, infrared stealth, and piezoresistive sensing. Nano Res. 2024 , 17 , 6757−6765..
Clausi, M.; Zahid, M. ; Shayganpour, A.; Bayer, I. S. Polyimide foam composites with nano-boron nitride (BN) and silicon carbide (SiC) for latent heat storage. Adv. Compos. Hybrid Mater. 2022 , 5 , 798−812..
[Li, Q., Zhang, L. N., Tao, X. M., Ding, X. Temperature sensors, review of flexible temperature sensing networks for wearable physiological monitoring. Adv. Healthc. Mater . 2017 , 6 , 1601371..
Chen, J.; Jiang, W. jun; Zeng, Z.; Sun, D. xiang; Qi, X. dong; Yang, J. hui; Wang, Y. Multifunctional shape memory foam composites integrated with tunable electromagnetic interference shielding and sensing. Chem. Eng. J. 2023 , 466 , 143373..
Lou, Z.; Chen, S.; Wang, L.; Shi, R.; Li, L.; Jiang, K.; Chen, D.; Shen, G. Ultrasensitive and ultraflexible e-skins with dual functionalities for wearable electronics. Nano Energy 2017 , 38 , 28−35..
Fan, W.; Liu, T.; Wu, F.; Wang, S.; Ge, S.; Li, Y.; Liu, J.; Ye, H.; Lei, R.; Wang, C.; Che, Q.; Li, Y. An antisweat interference and highly sensitive temperature sensor based on poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) fiber coated with polyurethane/graphene for real-time monitoring of body temperature. ACS Nano 2023 , 17 , 21073−21082..
Zhou, R.; Jin, Y.; Zeng, W.; Jin, H.; Bai, L.; Shi, L.; Shang, X. Liquid-free ion-conducting elastomer with environmental stability for soft sensing and thermoelectric generating. ACS Appl. Mater. Interfaces 2022 , 14 , 39120−39131..
Geng, Y.; Cao, R.; Innocent, M. T.; Hu, Z.; Zhu, L.; Wang, L.; Xiang, H.; Zhu, M. A high-sensitive wearable sensor based on conductive polymer composites for body temperature monitoring. Compos. Part A 2022 , 163 , 107269..
Feteira, A. Negative temperature coefficient resistance (NTCR) ceramic thermistors, an industrial perspective. J. Am. Ceram. Soc. 2009 , 92 , 967−983..
Reimann, T., Barth, S., Capraro, B., Bartsch, H., Töpfer, J. Cofiring of LTCC multilayer assemblies with integrated NTC thermistor temperature sensor layers. Ceram. Int. 2021 , 47 , 27849−27853..
Cui, X.; Chen, J.; Zhu, Y.; Jiang, W. Lightweight and conductive carbon black/chlorinated poly(propylene carbonate) foams with a remarkable negative temperature coef ficient effect of resistance for temperature sensor applications. J. Mater. Chem. C 2018 , 6 , 9354−9362..
Li, Z.; Feng, D.; Li, B.; Xie, D.; Mei, Y. FDM printed MXene/MnFe 2 O 4 /MWCNTs reinforced TPU composites with 3D voronoi structure for sensor and electromagnetic shielding applications. Compos. Sci. Technol. 2023 , 231 , 109803..
Li, M.; Xu, Q.; Zhang, Y.; Kong, W.; Wang, Y.; Zhang, G.; Gao, H.; Liu, L.; Ge, A. Thermoplastic polyurethane foams derived from cellulose nanofibril/carbon nanotube/(Fe/C) aerogels for efficient electromagnetic interference shielding. Ind. Crops Prod. 2024 , 209 , 117938..
Li, Y.; Yu, W.; Ruan, Q.; Li, K.; Guo, X.; Bai, Z.; Chen, J. Enhanced high-performance iPP/TPU/MWCNT nanocomposite for electromagnetic interference shielding. Polymers-Basel 2024 , 16 , 1837..
Anju; Masař, M.; Machovský, M.; Urbánek, M.; Šuly, P.; Hanulíková, B.; Vilčáková, J.; Kuřitka, I.; Yadav, R. S. Optimization of CoFe 2 O 4 nanoparticles and graphite fillers to endow thermoplastic polyurethane nanocomposites with superior electromagnetic interference shielding performance. Nanoscale Adv. 2024 , 6 , 214 9−2165..
Ba, K.; Zhang, M.; Wang, X.; Xu, P.; Song, W.; Wang, C.; Yang, W.; Liu, Y. Porous graphene composites fabricated by template method used for electromagnetic shielding and thermal conduction. Diamond Relat. Mater. 2023 , 131 , 109585..
Fan, X.; Zhang, G.; Li, J.; Shang, Z.; Zhang, H.; Gao, Q.; Qin, J.; Shi, X. Study on foamability and electromagnetic interference shielding effectiveness of supercritical CO 2 foaming epoxy/rubber/MWCNTs composite. Compos. Part A 2019 , 121 , 64−73..
Ameli, A.; Nofar, M.; Wang, S.; Park, C. B. Lightweight polypropylene/stainless-steel fiber composite foams with low percolation for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2014 , 6 , 11091−11100..
Yang, J.; Yang, Y.; Duan, H.; Zhao, G.; Liu, Y. Light-weight epoxy/nickel coated carbon fibers conductive foams for electromagnetic interference shielding. J Mater Sci-Mater El 2017 , 28 , 5925−5930..
Kuang, T., Chang, L., Chen, F., Sheng, Y., Fu, D., Peng, X. Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 2016 , 105 , 305−313..
Zhang, H. B.; Yan, Q.; Zheng, W. G.; He, Z.; Yu, Z. Z. Tough graphene−polymer microcellular foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2011 , 3 , 918−924..
Zheng, Z.; Yu, Z.; Kong, L.; Lin, B.; Fu, L.; Xu, C. Strain/deformation-insensitive wearable rubber composite for temperature monitoring based on the photothermal and thermoelectric conversion. Chem. Eng. J. 2024 , 484 , 149329..
Xu, Z.; Wang, N.; Li, N.; Zheng, G.; Dai, K.; Liu, C.; Shen, C. Liquid sensing behaviors of conductive polypropylene composites containing hybrid fillers of carbon fiber and carbon black. Compos. Part B 2016 , 94 , 45−51..
[Zou, Z.; Zhu, C.; Li, Y.; Lei, X.; Zhang, W.; Xiao, J. Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite. Sci. Adv ., 2018 , 4 , eaaq0508..
Chhetry, A.; Sharma, S.; Barman, S. C.; Yoon, H.; Ko, S.; Park, C.; Yoon, S.; Kim, H.; Park, J. Y. Black phosphorus@laser-engraved graphene heterostructure-based temperature–strain hybridized sensor for electronic-skin applications. Adv. Funct. Mater. 2021 , 31 , 2007661..
Joh, H.; Lee, W. S.; Kang, M. S.; Seong, M.; Kim, H.; Bang, J.; Lee, S. W.; Hossain, M. A.; Oh, S. J. Surface design of nanocrystals for high-performance multifunctional sensors in wearable and attachable electronics. Chem. Mater. 2019 , 31 , 436−444..
An, B. W.; Heo, S.; Ji, S.; Bien, F.; Park, J. U. Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature. Nat. Commun. 2018 , 9 , 2458..
Yang, Y.; Song, Y.; Bo, X.; Min, J.; Pak, O. S.; Zhu, L.; Wang, M.; Tu, J.; Kogan, A.; Zhang, H.; Hsiai, T. K.; Li, Z.; Gao, W. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 2020 , 38 , 217−224..
0
浏览量
12
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802046900号