FOLLOWUS
a.CNOOC Research Institute Co., Ltd., Beijing 100028, China
b.State Key Laboratory of Offshore Oil and Gas Exploitation, Beijing 102209, China
c.Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
d.University of Chinese Academy of Sciences, Beijing 100049, China
zhangjian@cnooc.com.cn (J.Z.)
jiangj@iccas.ac.cn (J.J.)
收稿日期:2025-06-25,
录用日期:2025-06-25,
网络出版日期:2025-09-10,
纸质出版日期:2025-10-05
Scan QR Code
Wang, Z. W.; Pu, Z. X.; Xu, L. F.; Li, S. C.; Zhang, J.; Jiang, J. AI-driven inverse design of high-performance viscosity modifiers. Chinese J. Polym. Sci. 2025, 43, 1700–1706
Zhi-Wei Wang, Ze-Xuan Pu, Li-Feng Xu, et al. AI-driven Inverse Design of High-performance Viscosity Modifiers[J]. Chinese journal of polymer science, 2025, 43(10): 1700-1706.
Wang, Z. W.; Pu, Z. X.; Xu, L. F.; Li, S. C.; Zhang, J.; Jiang, J. AI-driven inverse design of high-performance viscosity modifiers. Chinese J. Polym. Sci. 2025, 43, 1700–1706 DOI: 10.1007/s10118-025-3404-9.
Zhi-Wei Wang, Ze-Xuan Pu, Li-Feng Xu, et al. AI-driven Inverse Design of High-performance Viscosity Modifiers[J]. Chinese journal of polymer science, 2025, 43(10): 1700-1706. DOI: 10.1007/s10118-025-3404-9.
An AI-driven inverse design framework identifies optimal polymer structures for enhanced oil recovery by mapping target viscosity to molecular features
achieving a 12% improvement in viscosity through simulation-guided optimization of polymer topology and functionality.
Polymer flooding is a widely used technique in enhanced oil recovery (EOR)
but its effectiveness is often hindered by the poor viscosity retention of conventional polymers like hydrolyzed polyacrylamide (HPAM) under high-salinity conditions. Although recent advances in molecular engineering have concentrated on modifying polymer architecture and functional groups to address this issue
the complex interplay among polymer topology
charge distribution and hydrophilic-hydrophobic balance renders rational molecular design challenging. In this work
we present an AI-driven inverse design framework that directly maps target viscosity performance back to optimal molecular structures. Guided by practical molecular design strategies
the topological features (grafting density
side-chain length) and functional group-related features (copolymerization ratio
hydrophilic-hydrophobic balance) are encoded into a multidimensional design space. By integrating dissipative particle dynamics simulations with particle swarm algorithm
the framework efficiently explores the design space and identifies non-intuitive
high-performing polymer structure. The optimized polymer achieves a 12% enhancement in viscosity
attributed to the synergistic effect of electrostatic chain extension and hydrophobic aggregation. This study demonstrates the promise of AI-guided inverse design for developing next-generation EOR polymers and provides a generalizable approach for the discovery of functional soft materials.
Aguilera, R. F.; Eggert, R. G.; Gustavo, L. C.; Tilton, J. E. Depletion and the future availability of petroleum resources. Energy J. 2009 , 30 , 141−174..
Thomas, S. Enhanced oil recovery—an overview. Oil Gas Sci. Technol.—Rev. IFP 2008 , 63 , 9−19..
Gbadamosi, A. O.; Junin, R.; Manan, M. A.; Agi, A.; Yusuff, A. S. An overview of chemical enhanced oil recovery: recent advances and prospects. Int. Nano Lett. 2019 , 9 , 171− 202..
Alvarado, V.; Manrique, E. Enhanced oil recovery: an update review. Energies 2010 , 3 , 1529−1575..
Karimov, D.; Toktarbay, Z. Enhanced oil recovery: techniques, strategies, and advances. ES Mater. Manuf. 2023 , 23 , 1005..
Muggeridge, A.; Cockin, A.; Webb, K.; Frampton, H.; Collins, I.; Moulds, T.; Salino, P. Recovery rates, enhanced oil recovery and technological limits. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014 , 372 , 20120320..
Jia, H.; Kang, Y. A comprehensive review on application and perspectives of nanomaterials in enhanced oil recovery. Energy Fuels 2025 , 39 , 2916−2942..
Seright, R.; Wang, D. Polymer flooding: current status and future directions. Pet. Sci. 2023 , 20 , 910−921..
[Li, X.; Zhang, F.; Liu, G. Review on polymer flooding technology. IOP Conf. Ser.: Earth Environ. Sci . 2021 , 675 , 012199..
Xiangguo, L.; Bao, C.; Kun, X.; Weijia, C.; Yigang, L.; Zhang, Y.; Xiaoyan, W.; Zhang, J. Enhanced oil recovery mechanisms of polymer flooding in a heterogeneous oil reservoir. Pet. Explor. Dev. 2021 , 48 , 169−178..
Poling-Skutvik, R.; Krishnamoorti, R.; Conrad, J. C. Size-dependent dynamics of nanoparticles in unentangled polyelectrolyte solutions. ACS Macro Lett. 2015 , 4 , 1169−1173..
Corredor, L. M.; Escobar, S.; Cifuentes, J.; Llanos, S.; Quintero, H. I.; Colmenares, K.; Espinosa, C.; Delgadillo, C. L.; Romero Bohórquez, A. R.; Manrique, E. Effect of a SILICA/HPAM nanohybrid on heavy oil recovery and treatment: experimental and simulation study. ACS Omega 2024 , 9 , 38532−38547..
Xiong, B.; Loss, R. D.; Shields, D.; Pawlik, T.; Hochreiter, R.; Zydney, A. L.; Kumar, M. Polyacrylamide degradation and its implications in environmental systems. npj Clean Water 2018 , 1 , 17..
Zhang, G.; Yu, J. Effect of commonly used EOR polym ers on low concentration surfactant phase behaviors. Fuel 2021 , 286 , 119465..
Zhu, D.; Zhang, J.; Han, Y.; Wang, H.; Feng, Y. Laboratory study on the potential EOR use of HPAM/VES hybrid in high-temperature and high-salinity oil reservoirs. J. Chem. 2013 , 2013 , 927519..
Hernandez, F. A. T.; Niño, J. C. L.; Moreno, R. L. Effects of salts and temperature on rheological and viscoelastic behavior of low molecular weight HPAM solutions. Rev. Fuentes 2018 , 16 , 19−35..
Wever, D. A.; Picchioni, F.; Broekhuis, A. A. Comblike polyacrylamides as flooding agent in enhanced oil recovery. Ind. Eng. Chem. Res. 2013 , 52 , 16352−16363..
Zhou, C.; Yang, W.; Yu, Z.; Zhou, W.; Xia, Y.; Han, Z.; Wu, Q. Synthesis and solution properties of novel comb-shaped acrylamide copolymers. Polym. Bull. 2011 , 66 , 407−417..
Huang, G.; Wang, P.; Cai, Y.; Jiang, K.; Li, H. Tough, self-healing double network hydrogels crosslinked via multiple dynamic non-covalent bonds for strain sensor. J. Polym. Sci. 2023 , 61 , 1675−1687..
Seright, R. S.; Wang, D. Literature review and experimental observations of the effects of salinity, hardness, lithology, and ATBS content on HPAM polymer retention for the Milne Point polymer flood. SPE J. 2023 , 28 , 2300−2315..
Dong, S.; Li, L.; Wu, Y.; Huang, X.; Wang, X. Preparation and study of polyvinyl alcohol gel structures with acrylamide and 2-acrylamido-2-methyl-1-propanesulfonic acid for application in saline oil reservoirs for profile modification. ACS Appl. Mater. Interfaces 2023 , 15 , 14788−14799..
Salinas-Soto, C. A.; Choe, Y.; Hur, S.-M.; Ramírez-Hernández, A. Exploring conformations of comb-like polymers with varying grafting density in dilute solutions. J. Chem. Phys. 2023 , 159 , 114901..
Pan, X.; Ishaq, M. W.; Umair, A.; Ali, M. W.; Li, L. Evolution of single chain conformation for model comb-like chains with grafting density ranging from 0 to 100% in dilute solution. ACS Macro Lett. 2019 , 8 , 1535−1540..
Yiannourako u, M.; Rousseau, B.; Pannacci, N.; Herzhaft, B. Rheological behavior of aqueous polyacrylamide solutions determined by dissipative particle dynamics and comparison to experiments. Europhys. Lett. 2012 , 97 , 34007..
Duan, M.; Song, X.; Zhao, S.; Fang, S.; Wang, F.; Zhong, C.; Luo, Z. Layer-by-layer assembled film of asphaltenes/polyacrylamide and its stability of water-in-oil emulsions: a combined experimental and simulation study. J. Phys. Chem. C 2017 , 121 , 4332−4342..
Bennington, P.; Deng, C.; Sharon, D.; Webb, M. A.; de Pablo, J. J.; Nealey, P. F.; Patel, S. N.Role of solvation site segmental dynamics on ion transport in ethylene-oxide based side-chain polymer electrolytes. J. Mater. Chem. A 2021 , 9 , 9937−9951..
Viken, A. L.; Skauge, T.; Svendsen, P. E.; Time, P. A.; Spildo, K. Thermothickening and salinity tolerant hydrophobically modified polyacrylamides for polymer flooding. Energy Fuels 2018 , 32 , 10421−10427..
Groot, R. D.; Warren, P. B. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 1997 , 107 , 4423−4435..
Dong, Q.; Gong, X.; Yuan, K.; Jiang, Y.; Zhang, L.; Li, W. Inverse design of complex block copolymers for exotic self-assembled structures based on Bayesian optimization. ACS Macro Lett. 2023 , 12 , 401−407..
Paradiso, S. P.; Delaney, K. T.; Fredrickson, G. H. Swarm intelligence platform for multiblock polymer inverse formulation design. ACS Macro Lett. 2016 , 5 , 972−976..
Hannon, A. F.; Ding, Y.; Bai, W.; Ross, C. A.; Alexander-Katz, A. Optimizing topographical templates for directed self-assembly of block copolymers via inverse design simulations. Nano Lett. 2014 , 14 , 318−325..
Zhu, Y. L.; Liu, H.; Li, Z. W.; Qian, H. J.; Milano, G.; Lu, Z. Y. GALAMOST: GPU-accelerated large-scale molecular simulation toolkit. J. Comput. Chem. 2013 , 34 , 2197−2211..
Müller-Plathe, F. Reversing the perturbation in nonequilibrium molecular dynamics: an easy way to calculate the shear viscosity of fluids. Phys. Rev. E 1999 , 59 , 4894..
Hoogerbrugge, P. J.; Koelman, J. M. V. A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 1992 , 19 , 155..
Koelman, J. M. V. A.; Hoogerbrugge, P. J. Dynamic simulations of hard-sphere suspensions under steady shear. Europhys. Lett. 1993 , 21 , 363..
[Kennedy, J.; Eberhart, R. Particle swarm optimization. Proc. ICNN’95 Int. Conf. Neural Netw . 1995 ; pp 1942–1948..
[Shi, Y.; Eberhart, R. A modified particle swarm optimizer. Proc. 1998 IEEE Int. Conf. Evolutionary Computation, World Congress on Computational Intelligence 1998 ; pp 69–73..
Sobol, I. M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 2001 , 55 , 271−280..
Saltelli, A.; Annoni, P.; Azzini, I.; Campolongo, F.; Ratto, M.; Tarantola, S. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput. Phys. Commun. 2010 , 181 , 259−270..
Herman, J.; Usher, W. SALib: an open-source Python library for sensitivity analysis. J. Open Source Softw. 2017 , 2 , 97..
Iwanaga, T.; Usher, W.; Herman, J. Toward SALib 2.0: advancing the accessibility and interpretability of global sensitivity analyses. Socio-Environ. Syst. Model. 2022 , 4 , 18155−18155..
[Hansen, C. M. Hansen Solubility Parameters: A User’s Handbook ; CRC Press, 2007 , p. 1–544..
Murase, M.; Nakamura, D. Hansen solubility parameters for directly dealing with surface and interfacial phenomena. Langmuir 2023 , 39 , 10475−10484..
Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modell. Simul. Mater. Sci. Eng. 2009 , 18 , 015012..
Zhong, Z.; Xu, L.; Jiang, J. A neural-network-based mapping and optimization framework for high-precision coarse-grained simulation. J. Chem. Theory Comput. 2025 , 21 , 859−870..
Hu, J.; Zhou, L.; Jiang, J. Efficient machine learning force field for large-scale molecular simulations of organic systems. CCS Chem. 2025 , 7 , 716−730..
Xu, L.; Jiang, J. Synergistic integration of physical embedding and machine learning enabling precise and reliable force field. J. Chem. Theory Comput. 2024 , 20 , 7785−7795..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构