FOLLOWUS
a.State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
b.Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
ysong@buct.edu.cn (Y.S.)
glli@buct.edu.cn (G.L.L.)
收稿日期:2025-04-03,
修回日期:2025-05-10,
录用日期:2025-05-12,
网络出版日期:2025-07-22,
纸质出版日期:2025-09-05
Scan QR Code
Si, L. L.; Yang, J. Z.; Kong, A. N.; Song, Y.; Zhang, D. W.; Li, G. L. Polydimethylsiloxane-based antifouling polymers with tunable self-healing properties in aqueous environments. Chinese J. Polym. Sci. 2025, 43, 1629–1637
Lu-Lu Si, Jing-Zhi Yang, An-Nan Kong, et al. Polydimethylsiloxane-based Antifouling Polymers with Tunable Self-healing Properties in Aqueous Environments[J]. Chinese journal of polymer science, 2025, 43(9): 1629-1637.
Si, L. L.; Yang, J. Z.; Kong, A. N.; Song, Y.; Zhang, D. W.; Li, G. L. Polydimethylsiloxane-based antifouling polymers with tunable self-healing properties in aqueous environments. Chinese J. Polym. Sci. 2025, 43, 1629–1637 DOI: 10.1007/s10118-025-3382-y.
Lu-Lu Si, Jing-Zhi Yang, An-Nan Kong, et al. Polydimethylsiloxane-based Antifouling Polymers with Tunable Self-healing Properties in Aqueous Environments[J]. Chinese journal of polymer science, 2025, 43(9): 1629-1637. DOI: 10.1007/s10118-025-3382-y.
Polydimethylsiloxane (PDMS)-based antifouling polymers with tunable self-healing capabilities in aqueous conditions were fabricated by incorporating amphiphilic segments and Fe
3+
–catechol coordination crosslinking. The self-healing efficiency achieved 98% within 24 h in an aqueous environment. No bacterial adhesion was observed at the scratch site after repair.
Development of polymers with underwater self-healing and antifouling properties is crucial
particularly in harsh marine environments. In this study
polydimethylsiloxane (PDMS)-based antifouling p
olymers with tunable self-healing capabilities in aqueous conditions were fabricated by incorporating amphiphilic segments and Fe
3+
-catechol dynamic coordination crosslinking. The microphase formed within the PDMS matrix imparted static antifouling properties to the coatings. The mechanical properties of the damaged sample were restored at room temperature in an aqueous environment for 24 h
achieving a self-healing efficiency of almost 100%. The synthesized material exploited the dynamic coordination between Fe
3+
and catechol to facilitate underwater self-healing. No bacterial adhesion was observed at the scratch site after the coating was repaired. This material enables the long-term antifouling and autonomous repair of marine vessels and sensors
thereby reducing maintenance costs.
Schultz, M. P.; Bendick, J. A.; Holm, E. R.; Hertel, W. M. Economic impact of biofouling on a naval surface ship. Biofouling 2011 , 27 , 87−98..
Maan, A. M. C.; Hofman, A. H.; Vos, W. M.; Kamperman, M. Recent developments and practical feasibility of polymer-based antifouling coatings. Adv. Funct. Mater. 2020 , 30 , 2000936..
Wang, M.; Ma, C. F.; Zhang, G. Z. Dynamic surface antifouling materials. Chin. J. Chem. 2023 , 41 , 2881−2888..
Hu, P.; Xie, Q. Y.; Ma, C. F.; Zhang, G. Z. Silicone-based fouling-release coatings for marine antifouling. Langmuir 2020 , 36 , 2170−2183..
Zhang, Z. Q.; Huang, Y. J.; Ma, C. F.; Zhang, G. Z. Progress in polymer-ceramic hybrid antifouling coatings. Chinese J. Polym. Sci. 2023 , 41 , 995−1011..
Zhang, L.; Wang, H.; He, F.; Chen, H.; Xie, G.; Wei, B.; Luo, J.; He, B.; Wu, Z. Wear in-situ self-healing polymer composites incorporated with bifunctional microcapsules. Compos. Pt. B-Eng 2022 , 232 , 109566..
Jiao, C. Y.; Sun, L.; Shao, Q.; Song, J. Y.; Guo, Z. H. Advances in waterborne acrylic resins: synthesis principle, modification strategies, and their applications. ACS Omega 2021 , 6 , 2443−2449..
Hu, P.; Zeng, H.; Zhou, H.; Zhang, C.; Xie, Q.; Ma, C.; Zhang, G. Silicone elastomer with self-generating zwitterions for antifouling coatings. Langmuir 2021 , 37 , 8253−8260..
Wang, T. M.; Chen, S. G.; Feng, H. M.; Cao, L.; Zhao, Z.; Li, W. Modification strategy of siloxane antifouling coating: adhesion strength, static antifouling, and self-healing properties. Surf. Sci. Technol. 2023 , 1 , 28..
Chen, H. M.; Koh, J. J.; Liu, M. M.; Li, P. J.; He, C. B. Super tough and self-healable poly(dimethylsiloxane) elastomer via hydrogen bonding association and its applications as ttriboelectric nanogenerators. ACS Appl. Mater. Interfaces 2020 , 12 , 31975−31983..
Michailidis, M.; Gutner-Hoch, E.; Wengier, R.; Onderwater, R. C. A.; D’Sa, R. A.; Benayahu, Y.; Semenov, A.; Vinokurov, V. A.; Shchukin, D. G. Highly effective functionalized coatings with antibacterial and antifouling properties. ACS Sustain. Chem. Eng. 2020 , 8 , 8928−8937..
Liu, C.; Ma, C. F.; Xie, Q. Y.; Zhang, G. Z. Self-repairing silicone coatings for marine anti-biofouling. J. Mater. Chem. 2017 , 5 , 15855−15861..
Majumdar, P.; Lee, E.; Patel, N.; Ward, K.; Stafslien, S. J.; Daniels, J.; Chisholm, B. J.; Boudjouk, P.; Callow, M. E.; Callow, J. A. Combinatorial materials research applied to the development of new surface coatings IX: an investigation of novel antifouling/fouling-release coatings containing quaternary ammonium salt groups. Biofouling 2008 , 24 , 185−200..
Guo, H. S.; Yang, J.; Zhao, W.; Xu, T.; Lin, C.; Zhang, J.; Zhang, L. Direct formation of amphiphilic crosslinked networks based on PVP as a marine anti-biofouling coating. Chem. Eng. J. 2019 , 374 , 1353−1363..
Zeng, H. H.; Xie, Q. Y.; Ma, C. F.; Zhang, G. Z. Silicone elastomer with surface-enriched, nonleaching amphiphilic side chains for inhibiting marine biofouling. ACS Appl. Polym. Mater. 2019 , 1 , 1689−1696..
Liu, Y. T.; Zhao, S. R.; Jiang, Y. J.; Liu, L. Y. D.; Liu, Z. G.; Song, C.; Wang, C. AgNP hybrid organosilicon antifouling coating with spontaneous self-healing and long-term antifouling properties. Ind. Eng. Chem. Res. 2023 , 62 , 12999−13008..
Liu, Z. H.; Zheng, X. Y.; Zhang, H. W.; Li, W.; Jiang, R.; Zhou, X. Review on formation of biofouling in the marine environment and functionalization of new marine antifouling coatings. J. Mater. Sci. 2022 , 57 , 18221−18242..
Refait, P.; Paul, S. New frontiers in marine corrosion research. npj Mater. Degrad . 2025 , 9 , 11..
Hu, Y. T.; Huang, L. Y.; Lou, Y. T.; Chang, W. W.; Qian, H. C.; Zhang, D. W. Microbiologically influenced corrosion of stainless steels by Bacillus subtilis via bidirectional extracellular electron transfer. Corros. Sci. 2022 , 207 , 110608..
Liu, Y. T.; Chang, W. W.; Cui , T. Y.; Qian, H. C.; Hao, X. P.; Zhang, D. W. Microbiologically influenced corrosion inhibition induced by S. putriefaciens mineralization under extracellular polymeric substance regulation via FlrA and FlhG genes. Corros. Sci. 2023 , 221 , 111350..
Jiang, R. J.; Liu, M. Y.; Zheng, X. Y.; Zhou, X. Metal-free, low-surface energy, and self-healing polyurethane coating with an excellent antifouling property. ACS Appl. Polym. Mater. 2022 , 4 , 8594−8603..
Grigoriev, D. O.; Shchukina, E. M.; Shchukin, D. G. Nanocontainers for self-healing coatings. Adv. Mater. Interfaces 2017 , 4 , 1600318..
Chang, T.; Panhwar, F.; Zhao, G. Flourishing self-healing surface materials: recent progresses and challenges. Adv. Mater. Interfaces 2020 , 7 , 1901959..
Zhang, F.; Ju, P. F.; Pan, M. X.; Zhang, D. W.; Huang, Y.; Li, G. L.; Li, X. G. Self-healing mechanisms in smart protective coatings: a review. Corros. Sci. 2018 , 144 , 74−78..
Zuo, X. L.; Wang, S. F.; Le, X. X.; Lu, W.; Chen, T. Self-healing polymeric hydrogels: toward multifunctional soft smart materials. Chinese J. Polym. Sci. 2021 , 39 , 1262−1280..
Diesendruck, C. E.; Sottos, N. R.; Moore, J. S.; White, S. R. Biomimetic self-healing. Angew. Chem. Int. Ed 2015 , 54 , 10428−10447..
Ren, Y. T.; Dong, X. Dynamic polymeric materials via hydrogen-bond cross-linking: effect of multiple network topologies. Prog. Polym. Sci. 2024 , 158 , 101890..
Shchukin, D. G.; Möhwald, H. A coat of many functions. Science 2013 , 341 , 1458−1459..
Chen, D. D.; Wu, M. D.; Li, B. C.; Ren, K. F.; Cheng, Z. K.; Ji, J.; Li, Y.; Sun, J. Q. Layer-by-layer-assembled healable antifouling films. Adv. Mater. 2015 , 27 , 5882−5888..
Zhao, H. B.; Zang, X. R.; Shen, Y. Y.; Tan, M.; Wang, P.; Wu, J. J. Biomimetic three-arm antifouling coating with high adhesion and self-healing properties for marine optical windows. ACS Appl. Mater. Interfaces 2025 , 17 , 25774−25790..
Liu, B.; Wang, P.; Zou, M. J.; Ji, Y. K.; Dong, L.; Liu, S. J.; Ye, Q.; Zhou, F. Fabrication of silver-based metal-organic framework/graphene oxide composites hydrogels with anti-fouling and self-healing performance. Carbon 2025 , 238 , 120177..
Cui, Y. Y.; Sheng, M. Q.; Liu, Y.; Feng, Y.; Li, H. J.; Wu, Y. C. Antifouling and self-healing performance of marine coatings based on hydrogen-bond interactions. ACS Appl. Mater. Interfaces 2023 , 15 , 58967−58975..
Ghosh, K.; Morgan, A.; García Casas, X.; Kar Narayan, S. Tailoring of self-healable polydimethylsiloxane films for mechanical energy harvesting. ACS Appl. Energy Mater. 2024 , 7 , 8185−8195..
Qi, D. P.; Zhang, K. Y.; Tian, G. W.; Jiang, B.; Huang, Y. D. Stretchable electronics based on PDMS substrates. Adv. Mater 2020 , 33 , 2003155..
Wang, Z. H.; Scheres, L.; Xia, H. S.; Zuilhof, H. Developments and challenges in self-healing antifouling materials. Adv. Funct. Mater. 2020 , 30 , 1908098..
Li, X. B.; Xie, Q. Y.; Ma, C. F.; Zhang, G. Z. Self-healing, highly elastic and amphiphilic silicone-based polyurethane for antifouling coatings. J. Mater. Chem. B 2021 , 9 , 1384−1394..
Kim, C.; Ejima, H.; Yoshie, N. Non-swellable self-healing polymer with long-term stability under seawater. RSC Adv. 2017 , 7 , 19288−19295..
Jeong, Y. K.; Choi, J. W. Mussel-inspired self-healing metallopolymers for silicon nanoparticle anodes. ACS Nano 2019 , 13 , 8364−8373..
Li, C. H.; Zuo, J. L. Self-healing polymers based on coordination bonds. Adv. Mater. 2020 , 32 , 1903762..
Kong, A. N.; Si, L. L.; Chen, D. X.; Song, Y.; Li, G. L. Self-healing hydrophobic antifouling polymers with Fe 3+ -catechol coordination interaction. Macromol. Rapid Commun . 2024 , 46 , 2400674..
Ahn, B. K.; Lee, D. W.; Israelachvili, J. N.; Waite, J. H. Surface-initiated self-healing of polymers in aqueous media. Nat. Mater. 2014 , 13 , 867−72..
Yu, M. N.; Liu, M. M.; Fu, S. H. Slippery antifouling polysiloxane-polyurea surfaces with matrix self-healing and lubricant self-replenishing. ACS Appl. Mater. Interfaces 2021 , 13 , 32149−32160..
Tong, Z. M.; Guo, H. Y.; Di, Z. G.; Sheng, Y.; Song, L. N.; Hu, J. K.; Gao, X.; Hou, Y.; Zhan, X. L.; Zhang, Q. H. Squid inspired elastomer marine coating with efficient antifouling strategies: Hydrophilized defensive surface and lower modulus. Colloids Surf., B 2022 , 213 , 112392..
Song, Y.; Kong, A. N.; Chen, D. X.; Li, G. L. In-situ self-crosslinking strategy for autonomous self-healing materials. npj Mater. Degrad. 2023 , 7 , 1−7..
Guo, H. S.; Chen, P. G.; Tian, S.; Ma, Y. M.; Zhang, L. Amphiphilic marine antifouling coatings based on a hydrophilic polyvinylpyrrolidone and hydrophobic fluorine–silicon-containing block copolymer. Langmuir 2020 , 36 , 14573−14581..
Kawamoto, Y.; Ogura, K.; Shojiya, M.; Takahashi, M.; Kadono, K. F1s XPS of fluoride glasses and related fluoride crystals. J. Fluorine Chem. 1999 , 96 , 135−139..
Filippidi, E.; Cristiani, T. R.; Eisenbach, C. D.; Eisenbach, C. D.; Waite, J. H.; Israelachvili, J. N.; Ahn, B. K.; Valentine, M. T. Toughening elastomers using mussel-inspired iron-catechol complexes. Science 2017 , 358 , 502−505..
Kaur, S.; Narayanan, A.; Dalvi, S.; Liu, Q.; Joy, A.; Dhinojwala, A. Direct observation of the interplay of catechol binding and polymer hydrophobicity in a mussel-inspired elastomeric adhesive. ACS Cent. Sci. 2018 , 4 , 1420−1429..
Harrington, M. J.; Masic, A.; Holten-Andersen, N.; Waite, J. H.; Fratzl, P. Iron-clad fibers: A metal-based biological strategy for hard flexible coatings. Science 2010 , 328 , 216−220..
Barrett, D. G.; Fullenkamp, D. E.; He, L.; Holten-Andersen, N.; Lee, K. Y. C.; Messersmith, P. B. pH-Based regulation of hydrogel mechanical properties through mussel-inspired chemistry and processing. Adv. Funct. Mater. 2013 , 23 , 1111−1119..
Yang, H. C.; Zhang, M. L.; Chen, R. R.; Liu, Q.; Liu, J.; Yu, J.; Zhang, H.; Liu, P.; Lin, C.; Wang, J. Polyurethane coating with heterogeneity structure induced by microphase separation: a new combination of antifouling and cavitation erosion resistance. Prog. Org. Coat. 2021 , 151 , 106032..
Zhao, Z. L.; Ni, H. G.; Han, Z. Y.; Jiang, T. F.; Xu, Y.; Lu, X.; Ye, P. Effect of surface compositional heterogeneities and microphase segregation of fluorinated amphiphilic copolymers on antifouling performance. ACS Appl. Mater. Interfaces 2013 , 5 , 7808−7818..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构