FOLLOWUS
a.Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
b.School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
c.Shandong Sport University, Jinan 250102, China
d.Taishan Sports Industry Group Co., Ltd, Dezhou 253600, China
xupeiming@163.com (P.M.X)
chm_zongcy@ujn.edu.cn (C.Y. Z.)
收稿日期:2025-03-13,
录用日期:2025-05-02,
网络出版日期:2025-06-13,
纸质出版日期:2025-07-01
Scan QR Code
Guo, H. C.; Chen, J.; Feng, B. L.; Zhang, H. L.; Yang, X. Y.; Wang, L.; Xu, P. M.; Li, H.; Zong, C. Y. Multi-responsive itaconic acid-based polymer toward regulatable patterning surfaces and rewritable information storage applications. Chinese J. Polym. Sci. 2025, 43, 1114–1124
Hao-Chen Guo, Jian Chen, Bo-Lun Feng, et al. Multi-responsive Itaconic Acid-based Polymer toward Regulatable Patterning Surfaces and Rewritable Information Storage Applications[J]. Chinese journal of polymer science, 2025, 43(7): 1114-1124.
Guo, H. C.; Chen, J.; Feng, B. L.; Zhang, H. L.; Yang, X. Y.; Wang, L.; Xu, P. M.; Li, H.; Zong, C. Y. Multi-responsive itaconic acid-based polymer toward regulatable patterning surfaces and rewritable information storage applications. Chinese J. Polym. Sci. 2025, 43, 1114–1124 DOI: 10.1007/s10118-025-3370-2.
Hao-Chen Guo, Jian Chen, Bo-Lun Feng, et al. Multi-responsive Itaconic Acid-based Polymer toward Regulatable Patterning Surfaces and Rewritable Information Storage Applications[J]. Chinese journal of polymer science, 2025, 43(7): 1114-1124. DOI: 10.1007/s10118-025-3370-2.
A multiresponsive itaconic acid-based polymer was synthesized to fabricate smart surfaces
enabling reversible surface patterning and rewritable information storage. Various tailored wrinkling patterns and acid-printed patterns can be conveniently fabricated on these surfaces. This study advances the development of functional polymers using green engineering.
Functional materials synthesized from bio-based building blocks are fascinating and challenging in the fields of chemistry and materials science. Herein
we present a versatile strategy for synthesizing bio-based stimulus-responsive polymers derived from itaconic acid (IA). Bearing an azobenzene-containing side chain
the IA-based epoxy polymer exhibited both photoresponsiveness and acid/base-stimulus responsiveness. With controllable manipulation of the stress field of the wrinkling IA-polymer film
via
the stress relaxation effect resulting from the reversible cis-trans isomerization of the azobenzene moieties or solvent-induced swelling of the film
various tailor-made patterned wrinkling surfaces were conveniently fabricated. More importantly
the azobenzene protonation/deprotonation yields a reversible visual color transformation between pale yellow and purple in the film
which allows these IA-based polymer-coated surfaces to be utilize
d as rewritable information storage media. Various elegant pattern information can be acid-printed and base-erased (within 10 s) for multiple cycles and legible for over one day under laboratory conditions. Notably
the aforementioned dual-stimulus responsiveness of the IA-based polymer film enables its surface to be applied in information encryption. This study not only paves a new avenue for the convenient fabrication of stimulus-responsive surfaces but also sheds light on the development of functional polymers through green engineering.
Delidovich, I.; Hausoul, P. J. C.; Deng, L.; Pfützenreuter, R.; Rose, M.; Palkovits, R. Altern ative monomers based on lignocellulose and their use for polymer production. Chem. Rev. 2015 , 116 , 1540−1599..
Hillmyer, M. A. The promise of plastics from plants. Science 2017 , 358 , 868−870..
Backer, S. A.; Leal, L. Biodegradability as an off-ramp for the circular economy: Investigations into biodegradable polymers for home and personal care. Acc. Chem. Res. 2022 , 55 , 2011−2018..
Karlinskii, B. Y.; Ananikov, V. P. Recent advances in the development of green furan ring-containing polymeric materials based on renewable plant biomass. Chem. Soc. Rev. 2023 , 52 , 836−862..
Nieder-Heitmann, M.; Haigh, K. F.; Görgens, J. F. Process design and economic analysis of a biorefinery co-producing itaconic acid and electricity from sugarcane bagasse and trash lignocelluloses. Bioresour. Technol. 2018 , 262 , 159−168..
Trotta, J. T.; Watts, A.; Wong, A. R.; LaPointe, A. M.; Hillmyer, M. A.; Fors, B. P. Renewable thermosets and thermoplastics from itaconic acid. ACS Sustain. Chem. Eng. 2018 , 7 , 2691−2701..
Moore, G. W. K.; Howell, S. E. L.; Brady, M.; Xu, X.; McNeil, K. Anomalous collapses of nares strait ice arches leads to enhanced export of arctic sea ice. Nat. Commun. 2021 , 12 , 1..
Zhao, X.; Li, Y.; Zeng, J. Progress in the design and synthesis of biobased epoxy covalent adaptable networks. Polym. Chem. 2022 , 13 , 6573−6588..
Gonçalves, F. A. M. M.; Santos, M.; Cernadas, T.; Ferreira, P.; Alves, P. Advances in the development of biobased epoxy resins: Insight into more sustainable materials and future applications. Int. Mater. Rev. 2021 , 67 , 119−149..
Zhang, J.; Gong, Z.; Wu, C.; Li, T.; Tang, Y.; Wu, J.; Jiang, C.; Miao, M.; Zhang, D. Itaconic acid-based hyperbranched polymer toughened epoxy resins with rapid stress relaxation, superb solvent resistance and closed-loop recyclability. Green Chem. 2022 , 24 , 6900−6911..
Robert, T.; Friebel, S. Itaconic acid - a versatile building block for renewable polyesters with enhanced functionality. Green Chem. 2016 , 18 , 2922−2934..
Fouilloux, H.; Thomas, C. M. Production and polymerization of biobased acrylates and analogs. Macromol. Rapid Commun. 2021 , 42 , 2000530..
Kölsch, J. C.; Berač, C. M.; Lossada, F.; Stach, O. S.; Seiffert, S.; Walther, A.; Besenius, P. Recyclable vitrimers from biogenic poly(itaconate) elastomers. Macromolecules 2022 , 55 , 8032−8039..
Chen, J.; Wu, J.; Raffa, P.; Picchioni, F.; Koning, C. E. Superabsorbent polymers: From long-established, microplastics generating systems, to sustainable, biodegradable and future proof alternatives. Prog. Polym. Sci. 2022 , 125 , 101475..
Sollka, L.; Lienkamp, K. Progress in the free and controlled radical homo- and co-polymerization of itaconic acid derivatives: Toward functional polymers with controlled molar mass distribution and architecture. Macromol. Rapid Commun. 2020 , 42 , 2000546..
Sharma, S.; Sharma, G.; Kumar, A.; AlGarni, T. S.; Naushad, M.; ALOthman, Z. A.; Stadler, F. J. Adsorption of cationic dyes onto carrageenan and itaconic acid-based superabsorbent hydrogel: synthesis, characterization and isotherm analysis. J. Hazard. Mater. 2022 , 421 , 126729..
Jamaludin, F. H.; Mohd Yusoff, N. I. S.; Chida, H.; Yang, X.; Wong, T. W.; Zhou, H.; Li, T.; Wang, L.; Goh, P. S.; Ismail, A. F. Photo-triggered sustainable adhesive based on itaconic acid. ACS Sustain. Chem. Eng. 2022 , 10 , 6389−6401..
Lv, A.; Li, Z.; Du, F.; Li, Z. Synthesis, functionalization, and controlled degradation of high molecular weight polyester from itaconic acid via ADMET polymerization. Macromolecules 2014 , 47 , 7707−7716..
Zheng, Y.; Zhu, Y.; Wang, A. Highly efficient and selective adsorption of malachite green onto granular composite hydrogel. Chem. Eng. J. 2014 , 257 , 66−73..
Yu, Z.; Yan, Z.; Zhang, F.; Wang, J.; Shao, Q.; Murugadoss, V.; Alhadhrami, A.; Mersal, G. A. M.; Ibrahim, M. M.; El-Bahy, Z. M.; Li, Y.; Huang, M.; Guo, Z. Waterborne acrylic resin co-modified by itaconic acid and γ -methacryloxypropyl triisopropoxidesilane for improved mechanical properties, thermal stability, and corrosion resistance. Prog. Org. Coat. 2022 , 168 , 106875..
Khazi, M. I.; Jeong, W.; Kim, J. M. Functional materials and systems for rewritable paper. Adv. Mater. 2018 , 30 , 1705310..
Wang, Y.; Zhang, Y.; Zhang, S. Stimuli-induced reversible proton transfer for stimuli-responsive materials and devices. Acc. Chem. Res. 2021 , 54 , 2216−2226..
Sun, Y.; Le, X.; Zhou, S.; Chen, T. Recent progress in smart polymeric gel-based information storage for anti-counterfeiting. Adv. Mater. 2022 , 34 , 2201262..
Shen, Y.; Le, X.; Wu, Y.; Chen, T. Stimulus-responsive polymer materials toward multi-mode and multi-level information anti-counterfeiting: Recent advances and future challenges. Chem. Soc. Rev. 2024 , 53 , 606−623..
Kim, B.; Khazi, M. I.; Kim, J. M. Nickel-ion-coordinated reversibly solvatochromic polydiacetylene based on tubular assembly of macrocyclic diacetylene. Macromolecules 2021 , 54 , 8220−8228..
Wan, J.; Xu, J.; Zhu, S.; Li, J.; Chen, K. Multicolor photochromic material with dual protection of anti-counterfeiting and waterproofing. Chem. Eng. J. 2023 , 473 , 145500..
Sun, L.; Wang, B.; Xing, G.; Liang, C.; Ma, W.; Yang, S. Bi-induced photochromism and photo-stimulated luminescence with fast photochromic response for multi-mode dynamic anti-counterfeiting and optical information storage. Chem. Eng. J. 2023 , 455 , 140752..
Zhou, H.; Han, J.; Cuan, J.; Zhou, Y. Responsive luminescent MOF materials for advanced anticounterfeiting. Chem. Eng. J. 2022 , 431 , 134170..
Zheng, H. Q.; Yang, Y.; Wang, Z.; Yang, D.; Qian, G.; Cui, Y. Photo-stimuli-responsive dual-emitting luminescence of a spiropyran-encapsulating metal-organic framework for dynamic information encryption. Adv. Mater. 2023 , 35 , 2423793..
Wu, H.; Wang, Y.; Yu, J.; Pan, J. A.; Cho, H.; Gupta, A.; Coropceanu, I.; Zhou, C.; Park, J.; Talapin, D. V. Direct heat-induced patterning of inorganic nanomaterials. J. Am. Chem. Soc. 2022 , 144 , 10495−10506..
Chen, X.; Han, G.; Ren, P.; Lyu, Q.; Li, M.; Zhang, L.; Zhu, J. Shape memory photonic gels enable reversible regulation of photoluminescence: Towards multiple anti-counterfeiting. Chem. Eng. J. 2022 , 446 , 136879..
Chen, Z.; Chen, Y.; Guo, Y.; Yang, Z.; Li, H.; Liu, H. Paper-structure inspired multiresponsive hydrogels with solvent-induced reversible information recording, self-encryption, and multidecryption. Adv. Funct. Mater. 2022 , 32 , 2201009..
Li, P.; Zhang, Z.; Gao, X.; Sun, H.; Peng, D.; Zou, H.; Zhang, Q.; Hao, X. Fast self-bleaching Nb 2 O 5 -based photochromics for high security dynamic anti-counterfeiting and optical storage applications. Chem. Eng. J. 2022 , 435 , 134801..
Tao, B.; Ouyang, M.; Hua, Q.; Kong, C.; Zhang, J.; Li, W.; Bai, R.; Liu, J.; Lv, X.; Zhang, C. High electrochromic performance of perylene bisimide/ZnO hybrid films: an efficient, energy-saving, and green route. ACS Appl. Mater. Interfaces 2023 , 15 , 13730−13739..
Xie, Z.; Zhang, X.; Xiao, Y.; Wang, H.; Shen, M.; Zhang, S.; Sun, H.; Huang, R.; Yu, T.; Huang, W. Realizing photoswitchable mechanoluminescence in organic cr ystals based on photochromism. Adv. Mater. 2023 , 35 , 2212273..
Huang, H.; Li, H.; Yin, J.; Gu, K.; Guo, J.; Wang, C. Butterfly-inspired tri-state photonic crystal composite film for multilevel information encryption and anti-counterfeiting. Adv. Mater. 2023 , 35 , 2211117..
Chen, S.; Rossi, S.; Shanker, R.; Cincotti, G.; Gamage, S.; Kühne, P.; Stanishev, V.; Engquist, I.; Berggren, M.; Edberg, J.; Darakchieva, V.; Jonsson, M. P. Tunable structural color images by UV-patterned conducting polymer nanofilms on metal surfaces. Adv. Mater. 2021 , 33 , 2102451..
Wang, X.; Wu, Z.; Liu, Y.; Yin, L.; Hou, S.; Mao, J.; Cao, F.; Zhang, Q. PEDOT:PSS: Smart infrared rewritable materials. Adv. Funct. Mater. 2023 , 33 , 2300886..
Tan, J.; Li, Q.; Meng, S.; Li, Y.; Yang, J.; Ye, Y.; Tang, Z.; Qu, S.; Ren, X. Time-dependent phosphorescence colors from carbon dots for advanced dynamic information encryption. Adv. Mater. 2021 , 33 , 2006781..
Wang, Z.; Ding, Z.; Yang, Y.; Hu, L.; Wu, W.; Gao, Y. ; Wei, Y.; Zhang, X.; Jiang, G. Time-resolved encryption via photochromic and mechanochromic system based on silane-substituted spiropyran. Chem. Eng. J. 2023 , 457 , 141293..
Babazadeh-Mamaqani, M.; Mohammadi-Jorjafki, M.; Alipour-Fakhri, S.; Mardani, H.; Roghani-Mamaqani, H. Thermal-induced chromism and fluorescence emission of rhodamine B-containing polymers with different polarities: tracking temperature and development of thermochromic labels. Macromolecules 2023 , 56 , 5843−5853..
Yang, Y.; Li, A.; Yang, Y.; Wang, J.; Chen, Y.; Yang, K.; Tang, B. Z.; Li, Z. Multi-stimulus room temperature phosphorescent polymers sensitive to light and acid cyclically with energy transfer. Angew. Chem. Int. Ed. 2023 , 62 , e202308848..
Liu, Y.; Liang, S.; Yuan, C.; Best, A.; Kappl, M.; Koynov, K.; Butt, H. J.; Wu, S. Fabrication of anticounterfeiting nanocomposites with multiple security features via integration of a photoresponsive polymer and upconverting nanoparticles. Adv. Funct. Mater. 2021 , 31 , 2103908..
Zhai, C.; Fang, G.; Liu, W.; Wu, T.; Miao, L.; Zhang, L.; Ma, J.; Zhang, Y.; Zong, C.; Zhang, S.; Lu, C. Robust scalable-manufactured smart fabric surfaces based on azobenze ne-containing maleimide copolymers for rewritable information storage and hydrogen fluoride visual sensor. ACS Appl. Mater. Interfaces 2021 , 13 , 42024−42034..
Ma, S.; Liu, X.; Jiang, Y.; Tang, Z.; Zhang, C.; Zhu, J. Bio-based epoxy resin from itaconic acid and its thermosets cured with anhydride and comonomers. Green Chem. 2013 , 15 , 245−254..
Zong, C.; Zhao, Y.; Ji, H.; Han, X.; Xie, J.; Wang, J.; Cao, Y.; Jiang, S.; Lu, C. Tuning and erasing surface wrinkles by reversible visible-light-induced photoisomerization. Angew. Chem. Int. Ed. 2016 , 55 , 3931−3935..
Kocaman, S.; Akyay, İ. Itaconic acid based epoxy resin and application of olive pomace on the production of composite materials. Ind. Crops Prod. 2024 , 222 , 120022..
Cao, L.; Jiang, Y.; Dai, X.; Zhang, X.; Peng, Y.; Liu, X. Using azo-compounds to endow biobased thermosetting coatings with potential application for reversible information storage. ACS Appl. Polym. Mater. 2020 , 2 , 4551−4558..
Chen, J.; Chen, X.; Azhar, U.; Yang, X.; Zhou, C.; Yan, M.; Li, H.; Zong, C. Flexible and photo-responsive superwetting surfaces based on porous materials coated with mussel-inspired azo-copolymer. Chem. Eng. J. 2023 , 466 , 143176..
Wei, T.; Lei, L.; Kang, H.; Qiao, B.; Wang, Z.; Zhang, L.; Coates, P.; Hua, K. C.; Kulig, J. Tough bio-based elastomer nanocomposites with high performance for engineering applications. Adv. Eng. Mater. 2011 , 14 , 112−118..
Winkler, M.; Lacerda, T. M.; Mack, F.; Meier, M. A. R. Renewable polymers from itaconic acid by polycondensation and ring-opening-metathesis polymerization. Macromolecules 2015 , 48 , 1398−1403..
Hartley, G. S. The cis-form of azobenzene. Nature 1937 , 140 , 281..
Kumar, G. S.; Neckers, D. C. Photochemistry of azobenzene-containing polymers. Chem. Rev. 1989 , 89 , 1915−1925..
Ji, H.; Zhao, Y.; Zong, C.; Xie, J.; Han, X.; Wang, J.; Zhao, J.; Jiang, S.; Cao, Y.; Lu, C. Simple and versatile strategy to prevent surface wrinkling by visible light irradiation. ACS Appl. Mater. Interfaces 2016 , 8 , 19127−19134..
Zhang, P.; Lan, Z.; Wei, J.; Yu, Y. Photodeformable azobenzene-containing polyimide with flexible linkers and molecular alignment. ACS Macro Lett. 2021 , 10 , 469−475..
Min, P.; Li, Y.; Wang, L.; Song, W.; Ding, L. The shackling photoisomerization effect on self-assembly of azobenzene-containing side-chain homopolymers. Polymer 2022 , 258 , 125301..
Yuan, L.; Chen, J.; Li, Y.; Luo, G.; Gao, Z.; Zhou, C.; Li, H.; Xu, P.; Zong, C. Flexible azo-polyimide-based smart surface with photoregulatable surface micropatterns: toward rewritable information storage and wrinkle-free device fabrication. Langmuir 2023 , 39 , 2787−2796..
Chen, J.; Yang, X.; Chen, J.; Azhar, U.; Chen, F.; Zhu, R.; Zhou, C.; Jiang, S.; Wang, W.; Xu, P.; Zong, C. Light-responsive polyblend films with reconfigurable surface micropatterns as rewritable information storage media. Chin. J. Chem. 2022 , 41 , 273−279..
Bandara, H. M. D.; Burdette, S. C. Photoisomeriza tion in different classes of azobenzene. Chem. Soc. Rev. 2012 , 41 , 1809−1825..
Kommidi, S. S. R.; Smith, B. D. Supramolecular complexation of azobenzene dyes by cucurbit[7 ] uril. J. Org. Chem. 2023 , 88 , 8431−8440..
Bowden, N.; Brittain, S.; Evans, A. G. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 1998 , 393 , 146−149..
Hou, H.; Yin, J.; Jiang, X. Smart patterned surface with dynamic wrinkles. Acc. Chem. Res. 2019 , 52 , 1025−1035..
Zhang, L.; Jiang, X. Time-dependent wrinkle pattern based on photo-controlled stress relaxation for multi-level information encryption and information camouflage. Adv. Funct. Mater. 2024 , 34 , 2408932..
Hugel, T.; Holland, N. B.; Cattani, A. Single-molecule optomechanical cycle. Science 2002 , 296 , 1103−1106..
0
浏览量
3
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构