FOLLOWUS
a.Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi’an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
b.Key Lab of Organic Optoelectronics & Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, Beijing 100084, China
happytw_3000@nwpu.edu.cn (W.T.)
xuhuaping@mail.tsinghua.edu.cn (H.P.X.)
收稿日期:2025-02-17,
修回日期:2025-03-14,
录用日期:2025-03-18,
网络出版日期:2025-05-23,
纸质出版日期:2025-08-01
Scan QR Code
Liu, C. F.; Jin, Y. F.; Ma, J. H.; Tian, W.; Xu, H. P. Polymer materials synthesized in living cells for regulating biological functions. Chinese J. Polym. Sci. 2025, 43, 1293–1310
Cheng-Fei Liu, Yi-Fan Jin, Jia-Hui Ma, et al. Polymer Materials Synthesized in Living Cells for Regulating Biological Functions[J]. Chinese journal of polymer science, 2025, 43(8): 1293-1310.
Liu, C. F.; Jin, Y. F.; Ma, J. H.; Tian, W.; Xu, H. P. Polymer materials synthesized in living cells for regulating biological functions. Chinese J. Polym. Sci. 2025, 43, 1293–1310 DOI: 10.1007/s10118-025-3341-7.
Cheng-Fei Liu, Yi-Fan Jin, Jia-Hui Ma, et al. Polymer Materials Synthesized in Living Cells for Regulating Biological Functions[J]. Chinese journal of polymer science, 2025, 43(8): 1293-1310. DOI: 10.1007/s10118-025-3341-7.
We summarized recent advances and future trends in the field of intracellular polymerization
specifically focusing on covalent and supramolecular polymerization. This discussion comprehensively covers the diverse chemical designs
reaction mechanisms
responsive features
and functional applications.
Intracellular polymerization is an emerging field
showcasing high diversity and efficiency of chemistry. Motivated by the principles of natural biomolecular synthesis
polymerization within living cells is believed to be a powerful and versatile tool to modulate cell behavior. In this review
we summarized recent advances and future trends in the field of intracellular polymerization
specifically focusing on covalent and supramolecular polymerization. This discussion comprehensively covers the diverse chemical designs
reaction mechanisms
responsive features
and functional applications. Furthermore
we also clarified the connection between preliminary design of polymer synthesis and their subsequent biological applications. We hope this review will serve as an innovative platform for chemists and biologists to regulate biological functions in practical applications and clinical trials.
Shen, Q.; Huang, Y.; Bai, H.; Lv, F.; Wang, S. Polymer materials synthesized through cell-mediated polymerization strategies for regulation of biological functions. Acc. Mater. Res. 2023 , 4 , 57−70..
Liu, J.; Liu, B. Living cell-mediated in-situ polymerization for biomedical applications. Prog. Polym. Sci. 2022 , 129 , 101545..
Pan, S.; Yang, J.; Ji, S.; Li, T.; Gao, S.; Sun, C.; Xu, H. Cancer therapy by targeting thioredoxin reductase based on selenium containing dynamic covalent bond. CCS Chem. 2020 , 2 , 225−235..
Zhou, Z.; Maxeiner, K.; Ng, D. Y. W.; Weil, T. Polymer chemistry in living cells. Acc. Chem. Res. 2022 , 55 , 2998−3009..
Pieszka, M.; Han, S.; Volkmann, C.; Graf, R.; Lieberwirth, I.; Landfester, K.; Ng, D. Y. W.; Weil, T. Controlled supramolecular assembly inside living cells by sequential multistaged chemical reactions. J. Am. Chem. Soc. 2020 , 142 , 15780−15789..
Zhang, Z.; Xue, C.; Feng, Y.; Chen, G. Chemical synthesis of globo H and mannobiose glycopolymers and their immunological stimulation. Chinese J. Polym. Sci. 2024 , 42 , 1661−1667..
Kim, S.; Park, G.; Kim, D.; Sajid Hasan, M.; Lim, C.; Seu, M.; Ryu, J. Intracellular chemical reaction-induced self-assembly for the construction of artificial architecture and its functions. Adv. Nano Biomed Res. 2024 , 4 , 2300137..
Liu, S.; Zhang, Q.; He, H.; Yi, M.; Tan, W.; Guo, J.; Xu, B. intranuclear nanoribbons for selective killing of osteosarcoma cells. Angew. Chem. Int. Ed . 2022, 61 , e202210568..
Zheng, R.; Yang, J.; Mamuti, M.; Hou, D.; An, H.; Zhao, Y.; Wang, H. Controllable self-assembly of pepti de-cyanine conjugates in vivo as fine-tunable theranostics. Angew. Chem. Int. Ed. 2021 , 60 , 7809..
Guo, Y.; Li, P.; Guo, X.; Yao, C.; Yang, D. Synthetic nanoassemblies for regulating organelles: from molecular design to precision therapeutics. ACS Nano 2024 , 18 , 30224−30246..
Yao, C.; Tang, H.; Wu, W.; Tang, J.; Guo, W.; Luo, D.; Yang, D. Double rolling circle amplification generates physically cross-linked DNA network for stem cell fishing. J. Am. Chem. Soc. 2020 , 142 , 3422−3429..
Dai, Y.; Guan, J.; Zhang, S.; Pan, S.; Xianyu, B.; Ge Z.; Si, J.; He, C.; Xu, H. Tellurium-containing polymers: recent developments and trends. Prog. Polym. Sci. 2023 , 141 , 101678..
Dai, Y.; Zhang, Z.; Daniels, M.; Bao, Y.; Guan, J.; Zhang, S.; Zhou, R.; Tan, Y; Liu, L.; Xiao, H.; Cui, S.; Xu, H. Polytelluoxane: a chalcogen polymer that bridges the gap between inorganic oxides and macromolecules. Chem 2023 , 9 , 2006..
Shi, Q. Q.; Yin, H.; Song, R. D.; Xu, J.; Tan, J. J.; Zhou, X.; Cen, J.; Deng, Z. Y.; Tong, H. M.; Cui, C. H.; Zhang, Y. F.; Li, X. P.; Zhang, Z. B.; Liu, S. Y. Glutathione-depleting organic metal adjuvants for effective NIR-II photothermal immunotherapy. Nat. Chem. 2023 , 15 , 257..
Zhang, S.; Lu, Y.; Song, J.; Guan, J.; Dai, Y.; Cao, W.; Xu, H. Assembly regulates gamma radiation polymerization of polytelluoxane. Angew. Chem. Int. Ed . 2025 , 64 , e202415811..
He, C.; Liu, C.; Pan, S.; Tan, Y.; Guan, J.; Xu, H. Polyurethane with β -selenocarbonyl structure enabling the combination of plastic degradation and waste upcycling. Angew. Chem. Int. Ed. 2024 , 68 , e202317558..
Guo, X.; Yang, Z.; Fang, H.; Zhou, D.; Pang, X.; Tian, H.; Chen, X. Modulating the oxidation degree of linear polyethyleneimine for preparation of highly efficient and low-cytotoxicity degradable gene delivery carriers. Chinese J. Polym. Sci. 2024 , 42 , 1699−1709..
He, L.; Meng, F.; Chen, R.; Qin, J.; Sun, M.; Fan, Z.; Du, J. Precise regulations at the subcellular level through intracellular polymerization, assembly, and transformation. JACS Au 2024 , 4 , 4162−4186..
Lv, N.; Yang, Z.; Fan, J.; Ma, T.; Du, K.; Qin, H.; Jiang, H.; Zhu, J. Tumor receptor-mediated morphological transformation and in situ polymerization of diacetylene-containing lipidated peptide amphiphile on cell membranes for tumor suppression. Biomacromolecules 2025 , 26 , 825−834..
Ma, N.; Li, Y.; Xu, H.; Wang, Z.; Zhang, X. Dual Redox Responsive assemblies formed from diselenide block copolymers. J. Am. Chem. Soc. 2010 , 132 , 442−443..
Jia, M.; Liu, Y.; Wei, P.; Yi, T. From small to large-the application of in-situ polymerization within tumor cells. Aggregate 2024, 5 e533..
Ge, Z.; Liu, S. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem. Soc. Rev. 2013 , 42 , 7289..
Pan, S.; Li, T.; Tan, Y.; Xu, H. Selenium-containing nanoparticles synergistically enhance pemetrexed & NK cell-based chemoimmunotherapy. Biomaterials 2022 , 280 , 12132 1..
Yang, J.; Pan,S.; Gao, S.; Li, T.; Xu, H. CO/chemosensitization/antiangiogenesis Synergistic therapy with H 2 O 2 -responsive diselenide-containing polymer. Biomaterials 2021 , 271 , 120721..
Zhang, L.; Sun, C.; Tan, Y.; Xu, H. Selenium-sulfur-doped carbon dots with thioredoxin reductase activity. CCS Chem. 2022 , 4 , 2239−2248..
Dong, Y.; Yao, C.; Zhu, Y.; Yang, L.; Luo, D.; Yang, D. DNA Functional materials assembled from branched DNA: design, synthesis, and applications. Chem. Rev. 2020 , 120 , 9420..
Sun, C.; Tan, Y.; Xu, H. From selenite to diselenide-containing drug delivery systems. ACS Mater. Lett. 2020 , 2 , 1173..
Liu, C.; Ma, H.; Yuan, S.; Jin, Y.; Tian, W. Living cell-mediated self-assembly: from monomer design and morphology regulation to biomedical applications. ACS Nano 2025 , 19 , 2047−2069..
Schauenburg, D.; Weil, T. Chemical reactions in living systems. Adv. Sci. 2024 , 11 , 2303396..
Liu, C.; Liu, C.; Bai, Y.; Wang, J.; Tian, W. Drug self-delivery systems: molecule design, construction strategy, and biological application. Adv. Healthc. Mater. 2023 , 12 , 2202769..
Kim, S.; Choi, H.; Jin, S.; Son, S.; Lee, Y.; Kim, K.; Ryu, J. H. Self-assembly inside cellular organelles: aspects of functions and various strategies for cancer therapy. Giant 2023 , 16 , 100189..
Zhang, X.; Wang, J.; Zhang, Y.; Yang, Z.; Gao, J.; Gu, Z. Synthesizing biomaterials in living organisms. Chem. Soc. Rev. 2023 , 52 , 8126..
Wu, J.; Lei, D.; Zhang, Z.; Huang, F.; Buljane, M.; Yu, G. Polymerization in living organisms. Chem. Soc. Rev. 2023 , 52 , 2911..
Liu, C.; Si, J.; Cao, M.; Zhao, P.; Dai, Y.; Xu, H. Visualizing chain growth of polytelluoxane via polymerization induced emission. Adv. Sci. 2023 , 10 , 2304518..
Ge, M.; Wang, X.; Ren, N.; Tong, G.; Zhu, X. Multi-polymerization: from simple to complex. Chinese J. Polym. Sci. 2023 , 41 , 179−186..
Lin, J. C.; Chien, C. Y.; Lin, C. L.; Yao, B. Y.; Chen, Y. I.; Liu, Y. H.; Fang, Z. S.; Chen, J. Y.; Chen, W. Y.; Lee, N. N.; Chen, H. W.; Hu, C. M. J. Intracellular hydrogelation preserves fluid and functional cell membrane interfaces for biological interactions. Nat. Commun. 2019 , 10 , 1057..
Tang, M.; Yang, Z.; Tang, X.; Ma, H.; Xie, B.; Xu, J.; Gao, C.; Bardelang, D.; Wang, R. Hypoxia-initiated supramolecular free radicals induce intracellular polymerization for precision tumor therapy. J. Am. Chem. Soc. 2025 , 147 , 3488−3499..
Geng, J.; Li, W.; Zhang, Y.; Thottappillil, N.; Clavadetscher, J.; Lilienkampf, A.; Bradley, M. Radical polymerization inside living cells. Nat. Chem. 2019 , 11 , 578−0586..
Hou, H.; Tang, D.; Zhang, L.; Zhao, D.; Xiao, H.; Li, B. NIR light triggered intracellular polymerization via nano particles containing acrylates prodrugs and azo-polymers for inhibiting cisplatin efflux for combined chemotherapy and immunotherapy. Nano Today 2023 , 50 , 101858..
Arno, M. C. Engineering the mammalian cell surface with synthetic polymers: strategies and applications. Macromol. Rapid Commun. 2020 , 41 , 2000302..
Qi, J.; Li, W.; Xu, X.; Jin, F.; Liu, D.; Du, Y.; Wang, J.; Ying, X.; Jian, Y.; Du, Y.; Ji, J. Cyto-friendly polymerization at cell surfaces modulates cell fate by clustering cell-surface receptors. Chem. Sci. 2020 , 11 , 4221−4225..
Zhang, Y. Üçüncü, M. Gambardella, A. Baibek, A. Geng, J. Zhang, S. Clavadetscher, J. Litzen, I. Bradley, M. Lilienkampf, A. Bioorthogonal swarming: in situ generation of dendrimers. J. Am. Chem. Soc. 2020 , 142 , 21615..
Haktaniyan, M.; Bradley, M.; Polymers showing intrinsic antimicrobial activity. Chem. Soc. Rev . 2022, 51 , 8584..
Kato, M.; Kamigaito, M.; Sawamoto, M.; Higash imura, T. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris(triphenylphosphine)ruthenium(II)/Methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules 1995 , 28 , 1721..
Coessens, V.; Pintauer, T.; Matyjaszewski, K. Functional polymers by atom transfer radical polymerization. Prog. Polym. Sci. 2001 , 26 , 337..
Shen, Q. Huang, Y. Zeng, Y. Zhang, E. Lv, F. Liu, L. Wang, S. Intracellular radical polymerization of paclitaxel-bearing acrylamide for self-inflicted apoptosis of cancer cells. ACS Mater. Lett. 2021 , 3 , 1307..
Kim, Y. J.; Lee, B. S.; Choi, J.; Kim, B. J.; Choi, J. Y.; Kang, S. M.; Yang, S. H.; Choi, I. S. Cytocompatible polymer grafting from individual living cells by atom-transfer radical polymerization. Angew. Chem., Int. Ed. 2016 , 55 , 15306..
Gai, P.; Yu, W.; Zhao, H.; Qi, R.; Li, F.; Liu, L.; Lv, F.; Wang, S. Solar-powered organic semiconductor-bacteria biohybrids for CO 2 reduction into acetic acid. Angew. Chem., Int. Ed. 2020 , 59 , 7224..
Magennis, E. P.; Fernandez-Trillo, F.; Sui, C.; Spain, S. G.; Bradshaw, D. J.; Churchley, D.; Mantovani, G.; Winzer, K.; Alexander, C. Bacteria-instructed synthesis of polymers for self-selective microbial binding and labelling. Nat. Mater. 2014 , 13 , 748..
Li, S.; Han, G.; Zhang, W. Photoregulated reversible addition-fragmentation chain transfer (RAFT) polymerization. Polym. Chem. 2020 , 11 , 1830..
Braunecker, W. A.; Matyjaszewski, K. Controlled/living radical polymerization: features, developments, and perspectives. Prog Polym. Sci. 2007 , 32 , 93..
Lu, H.; Huang, Y.; Lv, F.; Liu, L.; Ma, Y.; Wang, S. Living bacteria-mediated aerobic photoinduced radical polymerization for in situ bacterial encapsulation and differentiation. CCS Chem. 2021 , 3 , 1296..
Niu, J.; Lunn, D. J.; Pusuluri, A.; Yoo, J. I.; O'Malley, M. A.; Mitragotri, S.; Soh, H. T.; Hawker, C. J. Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization. Nat. Chem. 2017 , 9 , 537..
Zhong, Y.; Xu, L.; Yang, C.; Xu, L.; Wang, G.; Guo, Y.; C heng, S.; Tian, X.; Wang, C.; Xie, R.; Wang, X.; Ding, L.; Ju, H. Site-selected In situ polymerization for living cell surface engineering. Nat. Commun. 2023 , 14 , 7285..
Zhang, Y.; Gao, Q.; Li, W.; He, R.; Zhu, L.; Lian, Q.; Wang, L.; Li, Y.; Bradley, M.; Geng, J. Controlled intracellular polymerization for cancer treatment. JACS Au 2022 , 2 , 579..
Abdelrahim, M.; Gao, Q.; Zhang, Y.; Li, W.; Xing, Q.; Bradley, M.; Geng, J. Light-mediated intracellular polymerization. Nat. Protoc. 2024 , 19 , 1984−2025..
Pattabiraman, V. R.; Bode, J. W. Rethinking amide bond synthesis. Nature 2011 , 480 , 471..
Li, L. L.; Qiao, S. L.; Liu, W.-J.; Ma, Y.; Wan, D.; Pan, J.; Wang, H. Intracellular construction of topology-controlled polypeptide nanostructures with diverse biological functions. Nat. Commun. 2017 , 8 , 1276..
Yang, C.; Flynn, J. P.; Niu, J. Facile Synthesis of sequence-regulated synthetic polymers using orthogonal SuFEx and CuAAC click reactions. Angew. Chem. Int. Ed. 2018 , 57 , 16194−16199..
Peng, B.; Zhao, X.; Yang, M.-S.; Li, L.-L. Intracellular transglutaminase-catalyzed polymerization and assembly for bioimaging of hypoxic neuroblastoma cells. J. Mater. Chem. B 2019 , 7 , 5626−5632..
Xu, H. B.; Chen, H. Y.; Lv, J.; Chen, B. B.; Zhou, Z. R.; Chang, S.; Gao, Y. T.; Huang, W. F.; Ye, M. J.; Cheng, Z. J.; Hafez, M. E.; Qian, R. C.; Li, D. W. Schiff base reaction in a living cell: in situ synthesis of a hollow covalent organic polymer to regulate biological functions. Angew. Chem. Int. Ed. 2023 , 62 , e202311002..
Liang, G.; Ren, H.; Rao, J. A biocompatible condensation reaction for controlled assembly of nanostructures in living cells. Nat. Chem. 2010 , 2 , 54−60..
Cui, L.; Vivona, S.; Smith, B. R.; Kothapalli, S.-R.; Liu, J.; Ma, X.; Chen, Z.; Taylor, M.; Kierstead, P. H.; Fréchet, J. M. J.; Gambhir, S. S.; Rao, J. Reduction triggered in situ polymerization in living mice. J. Am. Chem. Soc. 2020 , 142 , 15575−15584..
Qi, G.; Liu, X.; Shi, L.; Wu, M.; Liu, J.; Liu, B. Enzyme-mediated intracellular polymerization of AIEgens for light-up tumor localization and theranostics. Adv. Mater. 2022 , 34 , 2106885..
Hu, R.; Chen, X.; Zhou, T.; Si, H.; He, B.; Kwok, R. T. K.; Qin, A.; Tang, B. Z. Lab-in-cell based on spontaneous amino-yne click polymerization. Sci. China Chem 2019 , 62 , 1198..
Qi, R.; Zhao, H.; Zhou, X.; Liu, J.; Dai, N.; Zeng, Y.; Zhang, E.; Lv, F.; Huang, Y.; Liu, L.; Wang, Y.; Wang, S. In situ synthesis of photoactive polymers on a living cell surface via bio-palladium catalysis for modulating biological functions. Angew. Chem. Int. Ed . 2021, 60 , 5759..
Guo, B.; Yang, F.; Zhang, L.; Zhao, Q.; Wang, W.; Yin, L.; Chen, D.; Wang, M.; Han, S.; Xiao, H.; Xing, N. Cuproptosis induced by ROS responsive nanoparticles with elesclomol and copper combined with α PD-L1 for enhanced cancer immunotherapy Adv. Mater . 2023, 35 , 2212267..
Zhu, L.; You, Y.; Zhu, M.; Song, Y.; Zhang, J.; Hu, J.; Xu, X.; Xu, X.; Du, Y.; Ji, J. Ferritin-Hijacking nanoparticles spatiotemporally directing endogenous ferroptosis for synergistic anticancer therapy. Adv. Mater. 2022 , 34 , 2207174..
Zhou, L.; Lv, F.; Liu, L.; Shen, G.; Yan, X.; Bazan, G. C.; Wang, S. Cross-linking of thiolated paclitaxel–oligo( p -phenylene vinylene) conjugates aggregates inside tumor cells leads to “Chemical Locks” that increase drug efficacy. Adv. Mater. 2018 , 30 , 1704888..
Di, Y.; Zhang, E.; Yang, Z.; Shen, Q.; Fu, X.; Song, G.; Zhu, C.; Bai, H.; Huang, Y.; Lv, F.; Liu, L.; Wang, S. Selective fluorescence imaging of cancer cells based on ROS-triggered intracellular cross-linking of artificial enzyme. Angew. Chem. Int. Ed. 2022 , 61 , e202116457..
Kim, S.; Jana, B.; Go, E. M.; Lee, J. E.; Jin, S.; An, E. K.; Hwang, J.; Sim, Y.; Son, S.; Kim, D.; Kim, C.; Jin, J. O.; Kwak, S. K.; Ryu, J.H. Intramitochondrial disulfide polymerization controls cancer cell fate. ACS Nano 2021 , 15 , 14492..
Wang, L.; Fan, F. Q.; Cao, W.; Xu, H. Ultrasensitive ROS -responsive coassemblies of tellurium-containing molecules and phospholipids. ACS Appl. Mater. Interfaces 2015 , 7 , 16054−16060..
Cao, W.; Gu, Y. W.; Li, T. Y.; Xu, H. Ultra-sensitive ROS-responsive tellurium-containing polymers. Chem. Commun. 2015 , 51 , 7069−7071..
Fang, R.; Xu, H.; Cao, W.; Yang, L.; Zhang, X. Reactive oxygen species (ROS)-responsive tellurium-containing hyperbranched polymer. Polym. Chem. 2015 , 6 , 2817−2821..
Dai, Y.; Li, T.; Zhang, Z.; Tan, Y.; Pan, S.; Zhang, L.; Xu, H. Oxidative polymerization in living cells. J. Am. Chem. Soc. 2021 , 143 , 10709..
Liu, C.; Xianyu, B.; Dai, Y.; Pan, S.; Li, T.; Xu, H. Intracellular hyperbranched polymerization for circumventing cancer drug resistance. ACS Nano 2023 , 17 , 11905..
Liu, C.; Xianyu, B.; He, C.; Cao, M.; Chen, Z.; Li, T.; Xu, H. Intracellular construction of topological polymer networks to destruct organelles. CCS Chem. 2025 , 7 , 403−415..
Gospodinova, N.; Terlemezyan, L. Conducting polymers prepared by oxidative polymerization: polyaniline. Prog. Polym. Sci. 1998 , 23 , 1443..
Liu, J.; Kim, Y. S.; Richardson, C. E.; Tom, A.; Ramakrishnan, C.; Birey, F.; Katsumata, T.; Chen, S.; Wang, C.; Wang, X.; Joubert, L. M.; Jiang, Y.; Wang, H.; Fenno, L. E.; Tok, J. B. H.; Pasca, S. P.; Shen, K.; Bao, Z.; Deisseroth, K. Genetically targeted chemical assembly of functional materials in living cells, tissues, and animals. Science 2020 , 367 , 1372..
Zhang, A.; Loh, K. Y.; Kadur, C. S.; Michalek, L.; Dou, J.; Ramakrishnan, C.; Bao, Z.; Deisseroth, K. Genetically targeted chemical assembly of polymers specifically localized extracellularly to surface membranes of living neurons. Sci. Adv. 2023 , 9 , eadi1870..
Wang, A.; Li, H.; Feng, H.; Qiu, H.; Huang, R.; Wang, Y.; Ji, S.; Liang, H.; Shen, X. C.; Jiang, B. P. In situ polymerization of aniline derivative in vivo for NIR-II phototheranostics of tumor. ACS Appl. Mater. Interfaces 2023 , 15 , 5870..
Cheng, W.; Zeng, X.; Chen, H.; Li, Z.; Zeng, W.; Mei, L.; Zhao, Y. Versatile polydopamine platforms: synthesis and promising applications for surface modification and advanced nanomedicine. ACS Nano 2019 , 13 , 8537..
Li, Z.; Fu, S.; Li, H.; Chen, B.; Xie, D.; Fu, D.; Feng, Y.; Gao, C.; Liu, S.; Wilson, D. A.; Tu, Y.; Peng, F. Light-driven micromotor swarm induced in-situ polymerization and synergistic photothermal therapy. Chem. Eng. J. 2023 , 468 , 143393..
Sheng, S.; Liu, F.; Meng, M.; Xu, C.; Tian, H.; Chen, X. Dual reactive oxygen species generator independent of light and oxygen for tumor imaging and catalytic therapy. CCS Chem. 2022 , 4 , 2321..
Wang, S.; Yu, G.; Wang, Z.; Jacobson, O.; Lin, L.; Yang, W.; Deng, H.; He, Z.; Liu, Y.; Chen, Z.;Chen, X. Enhanced antitumor efficacy by a cascade of reactive oxygen species generation and drug release. Angew. Chem. Int. Ed. 2019 , 58 , 14758..
Baghdasaryan, O.; Khan, S.; Lin, J. C.; Lee-Kin, J.; Hsu, C. Y.; Hu, C. M. J.; Tan, C. Synthetic control of living cells by intracellular polymerization. Trend. Biotechnol. 2024 , 42 , 241..
Li, Y.; Kang, S.; Shi, G.; Chen, Y.; Li, B.; Zhang, J.; Wan, X. Synthesis of proline-derived helical copolyacetylenes as chiral stationary phases for HPLC enantioseparation. Chinese J. Polym. Sci. 2025 , 43 , 61−69..
Zhang, X. Supramolecular polymer chemistry: Past, present, and future. Chinese J. Polym. Sci. 2022 , 40 , 541−542..
Liu, Z.; Liu, Y. Multicharged cyclodextrin supramolecular assemblies. Chem. Soc. Rev. 2022 , 51 , 4786..
Li, X.; Shen, M.; Yang, J.; Liu, L.; Yang, Y. W. Pillararene-based stimuli-responsive supramolecular delivery systems for cancer therapy. Adv. Mater. 2024 , 36 , 2313317..
Zhang, Y.; Zhang, N.; Xiao, K.; Yu, Q.; Liu, Y. Photo-controlled reversible microtubule assembly mediated by paclitaxel-modified cyclodextrin. Angew. Chem. Int. Ed. 2018 , 57 , 8649..
Yi, Y.; An, H. W.; Wang, H. Intelligent biomater ialomics: molecular design, manufacturing, and biomedical applications. Adv. Mater. 2024 , 36 , 2305099..
Yin, Z.; Yang, Y.; Yang, J.; Song, G.; Hu, H.; Zheng, P.; Xu, J. F. Supramolecular polymerization powered by escherichia coli: fabricating a near-infrared photothermal antibacterial agent in situ. CCS Chem . 2022 , 4 , 3285−3295..
Palamà, I.; Di Maria, F.; Viola, I.; Fabiano, E.; Gigli, G.; Bettini, C.; Barbarella, G. Live-cell-permeant thiophene fluorophores and cell-mediated formation of fluorescent fibrils. J. Am. Chem. Soc. 2011 , 133 , 17777..
Li, Z.; Chen, S.; Binder, W. H.; Zhu, J. Hydrogen-bonded polymer nanomedicine with AIE characteristic for intelligent cancer therapy. ACS Macro Lett. 2023 , 12 , 1384..
Sun, X.; Dong, Y.; Liu, Y.; Song, N.; Li, F.; Yang, D. Self-assembly of artificial architectures in living cells-design and applications. Sci. China Chem. 2022 , 65 (1), 31-47..
Guo, Y.; Li, S.; Tong, Z.; Tang, J.; Zhang, R.; Lv, Z.; Song, N.; Yang, D. Telomerase-mediated self-assembly of DNA network in cancer cells enabling mitochondrial interference. J. Am. Chem. Soc. 2023 , 145 , 23859−23873..
Yao, C.; Xu, Y.; Tang, J.; Hu, P.; Qi, H.; Yang, D. Dynamic assembly of DNA-ceria nanocomplex in living cells generates artificial peroxisome. Nat. Commun. 2022 , 13 , 7739..
Zhou, Z.; Maxeiner, K.; Moscariello, P.; Xiang, S.; Wu, Y.; Ren, Y.; Whitfield, C. J.; Xu, L.; Kaltbeitzel, A.; Han, S.; Mücke, D.; Qi, H.; Wagner, M.; Kaiser, U.; Landfester, K.; Lieberwirth, I.; Ng, D. Y. W.; Weil, T. In situ Assembly of platinum(II)-metallopeptide nanostructures disrupts energy homeostasis and cellular metabolism. J. Am. Chem. Soc. 2022 , 144 , 12219−12228..
Ren, Y.; Zhou, Z.; Maxeiner, K.; Kaltbeitzel, A.; Harley, I.; Xing, J.; Wu, Y.; Wagner, M.; Landfester, K.; Lieberwirth, I.; Weil, T.; Ng, D. Y. W. Supramolecular assembly in live cells mapped by real-time phasor-fluorescence lifetime imaging. J. Am. Chem. Soc. 2024 , 146 , 11991−11999..
Liu, X.; Li, M.; Liu, J.; Song, Y.; Hu, B.; Wu, C.; Liu,A.; Zhou, H.; Long, J.; Shi, L.; Yu, Z. In situ self-sorting peptide assemblies in living cells for simultaneous organelle targeting. J. Am. Chem. Soc . 2022 , 144 , 9312−9323..
Choi, H.; Park, G.; Shin, E.; Shin, S. W.; Jana, B.; Jin, S.; Kim, S.; Wang, H.; Kwak, S.; Xu, B.; Ryu, J. Intramitochondrial co-assembly between ATP and nucleopeptides induces cancer cell apoptosis. Chem. Sci. 2022 , 13 , 6197−6204..
Zheng, Z.; Chen, P.; Xie, M.; Wu, C.; Luo, Y.; Wang, W.; Jiang, J.; Liang, G. Cell environment-differentiated self-assembly of nanofibers. J. Am. Chem. Soc. 2016 , 138 , 11128−11131..
Zhan, J.; Cai, Y.; He, S.; Wang, L.; Yang, Z. Tandem molecular self-assembly in liver cancer cells. Angew. Chem. Int. Ed. 2018 , 57 , 1813−1816..
Zhao, X.; Li, L.; Zhao, Y.; An, H.; Cai, Q.; Lang, J.; Han, X.; Peng, B.; Fei, Y.; Liu, H.; Qin, H.; Nie, G.; Wang, H. In situ self-assembled nanofibers precisely target cancer-associated fibroblasts for improved tumor imaging. Angew. Chem. Int. Ed . 2019 , 58 , 15287−15294..
Yang, X.; Lu, H.; Wu, B.; Wang, H. Triggered self-sorting of peptides to form higher-order assemblies in a living system. ACS Nano 2022 , 16 , 18244−18252..
Tian, F.; Guo, R.; Wu, C.; Liu, X.; Zhang, Z.; Wang, Y.; Wang, H.; Li, G.; Yu, Z. Assembly of glycopeptides in living cells resembling viral infection for cargo delivery. Angew. Chem. Int. Ed. 2024 , 63 , e202404703..
Zhang, N.; Hou, D.; Hu, X.; Liang, J.; Wang, M.; Song, Z.; Yi, L.; Wang, Z.; An, H.; Xu, W.; Wang, H. Nano proteolysis targeting chimeras (PROTACs) with anti-hook effect for tumor therapy. Angew. Chem. Int. Ed. 2023 , 62 , e202308049..
Jeena, M. T.; Palanikumar, L.; Go, E.; Kim, I.; Kang, M. G.; Lee, S.; Park, S.; Choi, H.; Kim, C.; Jin, S.; Bae, S.; Rhee, H.; Lee, E.; Kwak, S.; Ryu, J. Mitochondria localization induced self-assembly of peptide amphiphiles for cellular dysfunction. Nat. Commun. 2017 , 8 , 26..
Ding, Y.; Zheng, D.; Xie, L.; Zhang, X.; Zhang, Z.; Wang, L.; Hu, Z. W.; Yang, Z. Enzyme-instructed peptide assembly favored by preorganization for canc er cell membrane engineering. J. Am. Chem. Soc. 2023 , 145 , 4366..
Zhu, Y.; Tang, M.; Zhang, H.; Rahman, F.; Ballester, P.; Rebek Jr, J.; Hunter, C. A.; Yu, Y. Water and the cation−π Interaction. J. Am. Chem. Soc. 2021 , 143 , 12397..
Yamada, S. Cation−π interactions in organic synthesis. Chem. Rev. 2018 , 118 , 11353..
Ng, D. Y. W.; Vill, R.; Wu, Y.; Koynov, K.; Tokura, Y.; Liu, W.; Sihler, S.; Kreyes, A.; Ritz, S.; Barth, H.; Ziener, U.; Weil, T. Directing intracellular supramolecular assembly with N -heteroaromatic quaterthiophene analogues. Nat. Commun. 2017 , 8 , 1850..
Laskar, P.; Varghese, O.; Shastri, V. Advances in intracellular and on-Surface polymerization in living cells: implications for nanobiomedicines. Adv. NanoBiomed Res. 2023 , 3 , 2200174..
Pan, S.; Guan, J.; Xianyu, B.; Tan, Y.; Li, T.; Xu, H. A nanotherapeutic strategy to reverse NK cell exhaustion. Adv. Mater. 2023 , 35 , 2211370..
Wang, J.; Li, J.; Li, M.; Ma, K.; Wang, D.; Su, L.; Zhang, X.; Tang, B. Z. Nanolab in a cell: crystallization-induced in situ self-assembly for cancer theranostic amplification. J. Am. Chem. Soc. 2022 , 144 , 14388..
Zhang, A.; Zhao, S.; Tyson, J.; Deisseroth, K.; Bao, Z. Applications of synthetic polymers directed toward living cells. Nat. Synth. 2024 , 3 , 943−957..
Ma, T.; Chen, R.; Lv, N.; Li, Y.; Yang, Z.; Qin, H.; Li, Z.; Jiang, H.; Zhu, J. Morphological transformation and in situ polymerization of caspase-3 responsive diacetylene-containing lipidated peptide amphiphile for self-amplified cooperative antitumor therapy. Small 2022 , 18 , 2204759..
Gao, S.; Li, T.; Guo, Y.; Sun, C.; Xianyu, B.; Xu, H. Selenium-containing nanoparticles combine the NK cells mediated immunotherapy with radiotherapy and chemotherapy. Adv. Mater. 2020 , 32 , 1907568..
Li, T.; Pan, S.; Gao, S.; Xiang, W.; Sun, C.; Cao, W.; Xu, H. Diselenide–pemetrexed assemblies for combined cancer immuno-, radio-, a nd chemotherapies. Angew. Chem. Int. Ed. 2020 , 59 , 2700−2704..
Dong, Y.; Li, F.; Lv, Z.; Li, S.; Yuan, M.; Song, N.; Liu, J.; Yang, D. Lysosome interference enabled by proton-driven dynamic assembly of DNA nanoframeworks inside cells. Angew. Chem. Int. Ed. 2022 , 61 , e202207770..
Yao, S.; Xiao, D.; Shen, F.; Lim, I.; Rao, J. Light-controlled intracellular synthesis of poly(luciferin) polymers induces cell paraptosis. J. Am. Chem. Soc. 2025 , 147 , 2037−2048..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构