FOLLOWUS
a.State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
b.College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China
ywli@scu.edu.cn (Y.W.L.)
wangzhao@suda.edu.cn (Z.W.)
收稿日期:2025-01-22,
修回日期:2025-02-16,
录用日期:2025-02-26,
网络出版日期:2025-04-15,
纸质出版日期:2025-05-20
Scan QR Code
Ding, R.; Zhang, L. J.; Wang, L. F.; Chen, D.; Li, Y. W.; Wang, Z. Mechanochemical synthesis of linear melanin-like polymer with tunable physical properties. Chinese J. Polym. Sci. 2025, 43, 1032–1042
Ran Ding, Lin-Jun Zhang, Li-Fei Wang, et al. Mechanochemical Synthesis of Linear Melanin-like Polymer with Tunable Physical Properties[J]. Chinese journal of polymer science, 2025, 43(6): 1032-1042.
Ding, R.; Zhang, L. J.; Wang, L. F.; Chen, D.; Li, Y. W.; Wang, Z. Mechanochemical synthesis of linear melanin-like polymer with tunable physical properties. Chinese J. Polym. Sci. 2025, 43, 1032–1042 DOI: 10.1007/s10118-025-3325-7.
Ran Ding, Lin-Jun Zhang, Li-Fei Wang, et al. Mechanochemical Synthesis of Linear Melanin-like Polymer with Tunable Physical Properties[J]. Chinese journal of polymer science, 2025, 43(6): 1032-1042. DOI: 10.1007/s10118-025-3325-7.
We synthesized linear melanin-like polymers via mechanochemical Suzuki polymerization. Compared to PDA NPs
its antioxidant capacity has been significantly enhanced. Additionally
we prepared a melanin-like alternating copolymer using this method. It exhibited a fluorescence
emission wavelength that could reach up to 510 nm with a
QY
of 8.94%.
Polydopamine-based melanin-like materials have been widely used in the fields of ultraviolet (UV) shielding
solar desalination and anti-inflammatory treatment owing to their unique physical properties. The well-established synthesis of polydopamine nanoparticles involves the oxidative polymerization of dopamine-derived monomers
resulting in cross-linked nanostructures with high complexity and heterogeneity. Therefore
the controlled synthesis of polydopamine-based melanin-like materials with well-defined structures and predictable properties remains challenging. Herein
we propose a mechanochemical Suzuki polymerization approach for the synthesis of linear melanin-like polymers with tunable physical properties. Compared with polydopamine nanoparticles
the mechanochemical approach offers a more flexible chain-like structure
thereby enhancing its antioxidant performance. Furthermore
this approach also enables the preparation of a melanin-like alternating copolymer that exhibits green fluorescence owing to its
π
-conjugated structure. This study not only offers opportunities for exploring novel synthetic melanin materials
but also provides new insights into the structure-function relationships of polydopamine-based materials.
Cao, W.; Zhou, X.; McCallum, N. C.; Hu, Z.; Ni, Q. Z.; Kapoor, U.; Heil, C. M.; Cay, K. S.; Zand, T.; Mantanona, A. J.; Jayaraman, A.; Dhinojwala, A.; Deheyn, D. D.; Shawkey, M. D.; Burkart, M. D.; Rinehart, J. D.; Gianneschi, N. C. Unraveling the Structure and Function of Melanin Through Synthesis. J. Am. Chem. Soc. 2021 , 143 , 2622−2637..
Della, Vecchia, N. F.; Avolio, R.; Alfè, M.; Errico, M. E.; Napolitano, A.; d'Ischia, M. Building-block diversity in polydopamine underpins a multifunctional eumelanin-type platform tunable through a quinone control point. Adv. Funct. Mater. 2012 , 23 , 1331−1340..
Huangfu, C.; Liu, Z.; Lu, X.; Liu, Q.; Wei, T.; Fan, Z. Strong oxidation induced quinone-rich dopamine polymerization onto porous carbons as ultrahigh-capacity organic cathode for sodium-ion batteries. Energy Storage Mater. 2021 , 43 , 120−129..
Hong, S.; Na, Y. S.; Choi, S.; Song, I. T.; Kim, W. Y.; Lee, H. Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Adv. Funct. Mater. 2012 , 22 , 4711−4717..
Zhang, T.; Liang, B.; Zhang, J. H.; Yang, L.; Hu, J. F.; Li, Y. W. Sunlight-induced permanent hair dyeing. Chinese J. Polym. Sci. . 2025 , 43 , 261−270..
Bai, W.; Yang, P.; Liu, H.; Zou, Y.; Wang, X.; Yang, Y.; Gu, Z.; Li, Y. Boosting the optical absorption of melanin-like polymers. Macromolecules 2022 , 55 , 3493−3501..
Bai, W.; Yang, P.; Zhang, H.; Wang, T.; Yang, Y.; Zhang, X.; Duan, G.; Xu, Y.; Li, Y. Polycondensation-involved melanin-like polymers for enhanced solar energy utilization. Macromolecules 2023 , 56 , 4566−4574..
Yang, P.; Gu, Z.; Zhu, F.; Li, Y. Structural and functional tailoring of melanin-like polydopamine radical scavengers. CCS Chem. 2020 , 2 , 128−138..
Ma, Z. Y.; Li, D. Y.; Jia, X.; Wang, R. L.; Zhu, M. F. Recent advances in bio-inspired versatile polydopamine platforms for “smart” cancer photothermal therapy. Chinese J. Polym. Sci. 2023 , 41 , 699−712..
Han, J. C.; Wang, S. F.; Deng, R.; Wu, Q. Y. Polydopamine/imogolite nanotubes (PDA/INTs) interlayer modulated thin film composite forward osmosis membrane for minimizing internal concentration polarization. Chinese J. Polym. Sci. 2022 , 40 , 1233−1241..
Yuan, J.; Liu, Y.; Li, Y.; Chang, Q.; Deng, X.; Xie, Y. Metal-loaded synthetic melanin via oxidative polymerization of neurotransmitter norepinephrine exhibiting high photothermal conversion. Nano Lett. 2024 , 24 , 6353−6361..
Liu, K. Q.; Gu, Y. H.; Yi, Z. R.; Liu, Y. Q. Diketopyrrolopyrrole-based conjugated polymers as representative semiconductors for high-performance organic thin-film transistors and circuits. Chin. J. Polym. 2023 , 41 , 671−682..
Nirmani, L. P. T.; Pary, F. F.; Nelson, T. L. Mechanochemical Suzuki polymerization for the synthesis of polyfluorenes. Green Chem. Lett. Rev. 2022 , 15 , 863−868..
Wang, X. C.; Zhang, Y.; Yang, J. X.; Shao, J. J.; Wang, M. F.; Li, Y. F. Facile and cost-efficient synthesis of photovoltaic polymers via direct arylation coupling. Chinese J. Polym. Sci. 2023 , 41 , 1663−1685..
Menichetti, A.; Mavridi-Printezi, A.; Mordini, D.; Montalti, M. Polydopamine-based nanoprobes application in optical biosensing. Biosensors 2023 , 13 , 956..
Kohri, M. Progress in polydopamine-based melanin mi-metic materials for structural color generation. Sci. Technol. Adv. Mater. 2021 , 21 , 833−848..
Yang, P.; Zhang, S.; Chen, X.; Liu, X.; Wang, Z.; Li, Y. Recent developments in polydopamine fluorescent nanomaterials. Mater. Horiz. 2020 , 7 , 746−761..
Repenko, T.; Fokong, S.; De Laporte, L.; Go, D.; Kiessling, F.; Lammers, T.; Kuehne, A. J. Water-soluble dopamine-based polymers for photoacoustic imaging. ChemComm 2015 , 51 , 6084−6087..
Repenko, T.; Rix, A.; Nedilko, A.; Rose, J.; Hermann, A.; Vinokur, R.; Moli, S.; Cao-Milàn, R.; Mayer, M.; von Plessen, G.; Fery, A.; De Laporte, L.; Lederle, W.; Chigrin, D. N.; Kuehne, A. J. C. Strong photoacoustic signal enhancement by coating gold nanoparticles with melanin for biomedical imaging. Adv. Funct. Mater. 2017 , 28 , 1705607..
Pickhardt, W.; Siegfried, E.; Fabig, S.; Rappen, M. F.; Etter, M.; Wohlgemuth, M.; Grätz, S.; Borchardt, L. The Sonogashira coupling on palladium milling balls-a new reaction pathway in mechanochemistry. Angew. Chem. Int. Ed. 2023 , 62 , e202301490..
Cao, Q.; Howard, J. L.; Wheatley, E.; Browne, D. L. Mechanochemical activation of zinc and application to Negishi cross-coupling. Angew. Chem. Int. Ed. 2018 , 57 , 11339−11343..
Thorwirth, R.; Stolle, A.; Ondruschka, B. Fast copper-, ligand- and solvent-free Sonogashira coupling in a ball mill. Green Chem. 2010 , 12 , 985−991..
Liebscher, J.; Mrowczynski, R.; Scheidt, H. A.; Filip, C.; Hadade, N. D.; Turcu, R.; Bende, A.; Beck, S. Structure of polydopamine: a never-ending story. Langmuir 2013 , 29 , 10539−10548..
Panzella, L.; Gentile, G.; D'Errico, G.; Della Vecchia, N. F.; Errico, M. E.; Napolitano, A.; Carfagna, C.; d'Ischia, M. Atypical structural and pi-electron features of a melanin polymer that lead to superior free-radical-scavenging properties. Angew. Chem. Int. Ed. 2013 , 52 , 12684−12687..
Yu, S.; Ye, Z.; Liu, Z.; Sheng, W.; Li, R.; Zhao, Z.; Shang, Y.; Li, M.; Li, Y.; Jia, X. Controlled fabrication of polydopamine nanocapsules via polymerization-induced self-assembly. Chem. Mater. 2022 , 34 , 8705−8710..
Seo, T.; Toyoshima, N.; Kubota, K.; Ito, H. Tackling sol-ubility issues in organic synthesis: solid-state cross-coupling of insoluble aryl halides. J. Am. Chem. Soc. 2021 , 143 , 6165−6175..
Ravnsbaek, J. B.; Swager, T. M. Mechanochemical synthesis of poly(phenylene vinylenes). ACS Macro Lett. 2014 , 3 , 305−309..
Dzhevakov, P. B.; Topchiy, M. A.; Zharkova, D. A.; Morozov, O. S.; Asachenko, A. F.; Nechaev, M. S. Miyaura borylation and one-pot two-step homocoupling of aryl chlorides and bromides under solvent-free conditions. Adv. Synth. Catal. 2016 , 358 , 977−983..
Rodriguez, S.; Qu, B.; Haddad, N.; Reeves, D. C.; Tang, W.; Lee, H.; Krishnamurthy, D.; Senanayake, C. H. Oxaphosphole-based monophosphorus ligands for palladium-catalyzed amination reactions. Adv. Synth. Catal. 2011 , 353 , 533−537..
Seo, T.; Ishiyama, T.; Kubota, K.; Ito, H. Solid-state Su-zuki-Miyaura cross-coupling reactions: olefin-accelerated C-C coupling using mechanochemistry. Chem. Sci. 2019 , 10 , 8202−8210..
Getachew, G.; Korupalli, C.; Rasal, A. S.; Chang, J. Y. ROS generation/scavenging modulation of carbon dots as phototherapeutic candidates and peroxidase mimetics t o integrate with polydopamine nanoparticles/GOx towards cooperative cancer therapy. Compos. B. Eng. 2021 , 226 , 109364..
Borsalani, A.; Ghomsheh, S. M. T.; Azimi, A.; Mirzaei, M. Improved performance of nanocomposite forward osmosis membrane with polydopamine nanoparticles/polyphenylsulfone (PDA Nps/PPSU) substrate and UV irradiation treated polycarbonate active layer. Desalin Water Treat. 2021 , 211 , 69−79..
Huang, Q.; Chen, J.; Liu, M.; Huang, H.; Zhang, X.; Wei, Y. Polydopamine-based functional materials and their applications in energy, environmental, and catalytic fields: State-of-the-art review. Chem. Eng. J. 2020 , 387 , 124019..
Fu, H.; Li, J.; Zhang, Z.; Zhan, H.; Li, X.; Cheng, Y. Synthesis of novel polyfluorene with defined group in the center using aryl dipalladium complex as an initiator. J. Organomet. Chem. 2013 , 738 , 55−58..
Wong, M.; Hollinger, J.; Kozycz, L. M.; McCormick, T. M.; Lu, Y.; Burns, D. C.; Seferos, D. S. An apparent size-exclusion quantification limit reveals a molecular weight limit in the synthesis of externally initiated polythiophenes. ACS Macro Lett. 2012 , 1 , 1266−1269..
Ju, K. Y.; Lee, Y.; Lee, S.; Park, S. B.; Lee, J. K. Bioin-spired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property. Biomacromolecules 2011 , 12 , 625−632..
Micillo, R.; Panzella, L.; Koike, K.; Monfrecola, G.; Na-politano, A.; d'Ischia, M. "Fifty shades"of black and red or how carboxyl groups fine tune eumelanin and pheomelanin properties. Int. J. Mol. Sci . 2016 , 17 , 746..
Pan, C.; Sugiyasu, K.; Wakayama, Y.; Sato, A.; Takeuchi, M. Thermoplastic fluorescent conjugated polymers: benefits of preventing pi-pi stacking. Angew. Chem. Int. Ed. 2013 , 52 , 10775−10779..
Fu, Y.; Zhang, J.; Wang, Y.; Li, J.; Bao, J.; Xu, X.; Zhang, C.; Li, Y.; Wu, H.; Gu, Z. Reduced polydopamine nanoparticles incorporated oxidized dextran/chitosan hybrid hydrogels with enhanced antioxidative andantibacterial properties for accelerated wound healing. Carbohydr. Polym. 2021 , 257 , 117598..
Kumari, A.; Kumar, A.; Sahu, S. K.; Kumar, S. Synthesis of green fluorescent carbon quantum dots using wa ste polyolefins residue for Cu 2+ ion sensing and live cell imaging. Sens. Actuators B Chem. 2018 , 254 , 197−205..
Zhao, C.; Zuo, F.; Liao, Z.; Qin, Z.; Du, S.; Zhao, Z. Mussel-inspired one-pot synthesis of a fluorescent and water-soluble polydopamine-polyethyleneimine copolymer. Macromol. Rapid Commun. 2015 , 36 , 909−915..
Zhang, X.; Wang, S.; Xu, L.; Feng, L.; Ji, Y.; Tao, L.; Li, S.; Wei, Y. Biocompatible polydopamine fluorescent organic nanoparticles: facile preparation and cell imaging. Nanoscale 2012 , 4 , 5581−5584..
Feng, G.; Li, J.; Colberts, F. J.; Li, M.; Zhang, J.; Yang, F.; Li, W. “Double-cable” conjugated polymers with linear backbone toward high quantum efficiencies in single-component polymer solar cells. J. Am. Chem. Soc . 2017 , 139 , 18647−18656..
Kawski, A.; Piszczek, G.; Kubicki, A. Fluorescence properties of p-quaterphenyl and p-quinquephenyl derivatives in liquid solvents. Z. Naturforsch. A 1996 , 51 , 905−909..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构