FOLLOWUS
State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
qinruilin1010@163.com (Q.R.L.)
zzshao@fudan.edu.cn (Z.Z.S.)
收稿日期:2025-01-13,
修回日期:2025-02-03,
录用日期:2025-02-06,
网络出版日期:2025-04-15,
纸质出版日期:2025-05-20
Scan QR Code
Liu, Y.; Chen, X. Y.; Miao, B. L.; Ming, M. D.; Lin, Q. R.; Shao, Z. Z. Thermally induced transferable silk nanofibrils-based gas-liquid interfacial films: formation and applications. Chinese J. Polym. Sci. 2025, 43, 1001–1011
Yi Liu, Xu-Yang Chen, Bian-Liang Miao, et al. Thermally Induced Transferable Silk Nanofibrils-based Gas-Liquid Interfacial Films: Formation and Applications[J]. Chinese journal of polymer science, 2025, 43(6): 1001-1011.
Liu, Y.; Chen, X. Y.; Miao, B. L.; Ming, M. D.; Lin, Q. R.; Shao, Z. Z. Thermally induced transferable silk nanofibrils-based gas-liquid interfacial films: formation and applications. Chinese J. Polym. Sci. 2025, 43, 1001–1011 DOI: 10.1007/s10118-025-3315-9.
Yi Liu, Xu-Yang Chen, Bian-Liang Miao, et al. Thermally Induced Transferable Silk Nanofibrils-based Gas-Liquid Interfacial Films: Formation and Applications[J]. Chinese journal of polymer science, 2025, 43(6): 1001-1011. DOI: 10.1007/s10118-025-3315-9.
Schematic illustration of the formation of thermally induced interfacial films from silk fibroin nanofibrils (SNF). From silk fibers to microfibril dispersions
films form under thermal evaporation
driven by the Marangoni effect and local concentration. The films exhibited a layered structure
self-supporting properties
and transparency
enabling functional coatings
including fluorescent anti-counterfeiting applications.
Gas-liquid interfacial films have emerged as versatile materials for surface modification in biomedical applications
agriculture
and antifouling owing to their strong substrate-bonding capabilities. Silk nanofibrils (SNF)
as nanoscale b
uilding blocks of silk
exhibit exceptional mechanical stability
high crystallinity
and aqueous adaptability
making them ideal candidates for fabricating interfacial films. However
conventional fabrication methods for SNF- or protein-based interfacial films often involve complex and resource-intensive chemical processes. To overcome these challenges
this study introduces a simple and efficient strategy for preparing thermally induced SNF gas-liquid interfacial films
via
heat treatment
leveraging thermal evaporation-induced concentration to drive self-assembly. The method demonstrated broad applicability to various proteins and hydrophilic substrates
offering versatility and sustainability. Furthermore
the prepared films exhibited potential as antifouling and anti-counterfeiting functional coatings
significantly expanding the application scenarios of protein-based interfacial films.
Kang, K.; Lee, K. H.; Han, Y.; Gao, H.; Xie, S.; Muller, D. A.; Park, J. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 2017 , 550 , 229−233..
Xu, Y.; Goh, K.; Wang, R.; Bae, T. H. A review on polymer-based membranes for gas-liquid membrane contacting processes: current chall enges and future direction. Sep. Purif. Technol. 2019 , 229 , 115791..
Liu, Z.; Sun, B.; Wang, Z.; Chen, L. New mass-transfer model for predicting hydrate film thickness at the gas–liquid interface under different thermodynamics–hydrodynamics-saturation conditions. J. Phys. Chem. C 2019 , 123 , 20838−20852..
Yuan, Z.; Guo, Z.; Meng, F. Thin film prepared by gas–liquid interfacial self-assembly method and its applications in semiconductor gas sensors. Adv. Mater. Technol. 2023 , 8 , 2300494..
Jin, T.; Peydayesh, M.; Li, M.; Yao, Y.; Wu, D.; Mezzenga, R. Functional coating from amyloid superwetting films. Adv. Mater. 2022 , 34 , 2205072..
Liu, Y.; Miao, S.; Ren, H.; Tian, L.; Zhao, J.; Yang, P. Synthesis and functionalization of scalable and versatile 2D protein films via amyloid-like aggregation. Nat. Protoc. 2024 , 19 , 539−564..
Kar, A.; Bhati, A.; Acharya, P. V.; Mhadeshwar, A.; Venkataraman, P.; Barckholtz, T. A.; Bahadur, V. Diffusion-based modeling of film growth of hy drates on gas-liquid interfaces. Chem. Eng. Sci. 2021 , 234 , 116456..
Liu, Z.; Li, H.; Chen, L. T.; Sun, B. J. A new model of and insight into hydrate film lateral growth along the gas–liquid interface considering natural convection heat transfer. Energy Fuels 2018 , 32 , 2053−2063..
Wei, G.; Su, Z.; Reynolds, N. P.; Arosio, P.; Hamley, I. W.; Gazit, E.; Mezzenga, R. Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology. Chem. Soc. Rev. 2017 , 46 , 4661−4708..
Yang, M.; Li, Q.; Zhang, X.; Bilotti, E.; Zhang, C.; Xu, C.; Gan, S.; Dang, Z. M. Surface engineering of 2D dielectric polymer films for scalable production of high-energy-density films. Prog. Mater. Sci. 2022 , 128 , 100968..
Suzuki, Y.; Cardone, G.; Restrepo, D.; Zavattieri, P. D.; Baker, T. S.; Tezcan, F. A. Self-assembly of coherently dynamic, auxetic, two-dimensional protein crystals. Nature 2016 , 533 , 369−373..
Niu, S.; Saraf, R. F. Stability of order in solvent-annealed b lock copolymer thin films. Macromolecules 2003 , 36 , 2428−2440..
Li, X.; Li, S.; Zou, H.; Song, A.; Hao, J.; Lee, Y. I.; Liu, H. G. Block copolymer vesicles via liquid/liquid interface-mediated self-assembly. Appl. Surf. Sci. 2020 , 499 , 143896..
Matsuoka, R.; Sakamoto, R.; Hoshiko, K.; Sasaki, S.; Masunaga, H.; Nagashio, K.; Nishihara, H. Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface. J. Am. Chem. Soc. 2017 , 139 , 3145−3152..
Li, E. Q.; Vakarelski, I. U.; Chan, D. Y. C.; Thoroddsen, S. T. Stabilization of thin liquid films by repulsive van der waals force. Langmuir 2014 , 30 , 5162−5169..
Dalkas, G.; Euston, S. R. Molecular simulation of protein adsorption and conformation at gas-liquid, liquid-liquid and solid-liquid interfaces. Curr. Opin. Colloid Interface Sci. 2019 , 41 , 1−10..
Liu, D.; Cai, W.; Marin, M.; Yin, Y.; Li, Y. Air-liquid interfacial self-assembly of two-dimensional periodic nanostructured arrays. ChemNanoMat 2019 , 5 , 1338−1360..
Moon, G. D.; Lee, T. I.; Kim, B.; Chae, G.; Kim, J.; Kim, S.; Myoung, J. M.; Jeong, U. Assembled monolayers of hydrophilic particles on water surfaces. ACS Nano 2011 , 5 , 8600−8612..
Kaufman, G.; Liu, W.; Williams, D. M.; Choo, Y.; Gopinadhan, M.; Samudrala, N.; Sarfati, R.; Yan, E. C. Y.; Regan, L.; Osuji, C. O. Flat drops, elastic sheets, and microcapsules by interfacial assembly of a bacterial biofilm protein, bsla. Langmuir 2017 , 33 , 13590−13597..
Poirier, A.; Banc, A.; Stocco, A.; In, M.; Ramos, L. Multistep building of a soft plant protein film at the air-water interface. J. Colloid Interface Sci. 2018 , 526 , 337−346..
Wang, Z.; Morales-Acosta, M. D.; Li, S.; Liu, W.; Kanai, T.; Liu, Y.; Chen, Y. N.; Walker, F. J.; Ahn, C. H.; Leblanc, R. M.; Yan, E. C. Y. A narrow amide I vibrational band observed by sum frequency generation spectroscopy reveals highly ordered structures of a biofilm protein at the air/water interface. Chem. Commun. 2016 , 52 , 2956−2959..
Liu, Y.; Song, Y.; Wang, J.; Shao, Z. Elevating postinjection stability in silk nanofibril hydrogels to prevent intervertebral disc degeneration. Biomacromolecules 2024 , 25 , 7828−7837..
Hu, Y.; Yu, J.; Liu, L.; Fan, Y. Preparation of natural amphoteric silk nanofibers by acid hydrolysis. J. Mater. Chem. B 2019 , 7 , 1450−1459..
Liu, Y.; Ling, S.; Wang, S.; Chen, X.; Shao, Z. Thixotropic silk nanofibril-based hydrogel with extracellular matrix-like structure. Biomater. Sci. 2014 , 2 , 1338−1342..
Liu, J.; Li, Z.; Lin, Q.; Jiang, X.; Yao, J.; Yang, Y.; Shao, Z.; Chen, X. A robust, resilient, and multi-functional soy protein-based hydrogel. ACS Sustain. Chem. Eng. 2018 , 6 , 13730−13738..
Chen, X. Y.; Wen, H. J.; Yao, J. R.; Chen, X.; Wang, Y.; Shao, Z.Z. Highly water-dispersible spiropyran-octapeptide supramolecules: efficient, multi-processable, and versatile photoswitches for time-dependent dual-mode encryption. Adv. Funct. Mater. 2025 , 35 , 2414865..
Yakupova, E. I.; Bobyleva, L. G.; Vikhlyantsev, I. M.; Bobylev, A. G. Congo Red and amyloids: history and relationship. Biosci. Rep . 2019 , 39 , BSR20181415..
0
浏览量
19
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构