FOLLOWUS
a.Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310008, China
b.Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou 213001, China
120086@zust.edu.cn (Y.W.)
tingtingsun@zust.edu.cn (T.T.S.)
收稿日期:2024-11-22,
修回日期:2025-01-04,
录用日期:2025-01-17,
网络出版日期:2025-03-11,
纸质出版日期:2025-04-01
Scan QR Code
Zhao, X. Y.; Sun, S. Q.; Zhou, N.; Xu, X. J.; Wang, Y.; Sun, T. T. Mesoscopic simulation on self-assembly of diphenylalanine-based analogue with ethylenediamine linker. Chinese J. Polym. Sci. 2025, 43, 666–676
Xin-Yi Zhao, Si-Qi Sun, Ning Zhou, et al. Mesoscopic Simulation on Self-assembly of Diphenylalanine-based Analogue with Ethylenediamine Linker[J]. Chinese journal of polymer science, 2025, 43(4): 666-676.
Zhao, X. Y.; Sun, S. Q.; Zhou, N.; Xu, X. J.; Wang, Y.; Sun, T. T. Mesoscopic simulation on self-assembly of diphenylalanine-based analogue with ethylenediamine linker. Chinese J. Polym. Sci. 2025, 43, 666–676 DOI: 10.1007/s10118-025-3300-3.
Xin-Yi Zhao, Si-Qi Sun, Ning Zhou, et al. Mesoscopic Simulation on Self-assembly of Diphenylalanine-based Analogue with Ethylenediamine Linker[J]. Chinese journal of polymer science, 2025, 43(4): 666-676. DOI: 10.1007/s10118-025-3300-3.
Diphenylalanine-based analogue with ethylenediamine linker (PA molecule) can self-assemble to form onion-like nanospheres
serving as highly effective carriers for cancer chemotherapeutic agents. And main chain-side chain interaction between PA molecules may be important in the formation of onion-like nanospheres.
Diphenylalanine and its analogs cause many concerns owing to their perfect self-assembly properties in the fields of biology
medicine
and nanotechnology. Experimental research has shown that diphenylalanine-based analogs with ethylenediamine linkers (PA
P = phenylalanine
and A = analog) can self-assemble into spherical assemblies
which can serve as novel anticancer drug carriers. In this work
to understand the assembly pathways
drug loading behavior
and formation mechanism of PA aggregates at the molecular level
we carried out dissipative particle dynamics (DPD) simulations of PA molecule systems. Our simulation results demonstrate that PA molecules spontaneously assemble into nanospheres and can self-assemble into drug-loaded nanospheres upon addition of the cancer chemotherapeutic agent doxorubicin (DOX). We also found that the hydrophobic side chain beads of PA molecules exhibited a unique onion-like distribution inside the nanospheres
which was not observed in the experiment. The onion-like nanospheres were verified by calculating the radial distribution function (RDF) of the DPD beads. Furthermore
based on the analysis of the percentages of different interaction components in the total nonbonded energies
main chain-side chain interactions between PA molecules may be important in the formation of onion-like nanospheres
and the synergistic effects of main chain-side chain
main chain-drug
side chain-drug
and main chain-solvent interactions are significant in the formation of drug-loaded nanospheres. These findings provide new insights into the structure and self-assembly pathway of PA assemblies
which may be helpful for the design of efficient and effective drug delivery systems.
Palmer, L. C.; Stupp, S. I. Molecular self-assembly into one-dimensional nanostructures. Acc. Chem. Res. 2008 , 41 , 1674−1684..
Ajayaghosh, A.; Praveen, V. K. π -Organogels of self-assembled p -phenylenevinylenes: soft materials with distinct size, shape, and functions. Acc. Chem. Res . 2007 , 40 , 644−656..
Aida, T.; Meijer, E. W.; Stupp, S. I. Functional supramolecular polymers. Science 2012 , 335 , 813−817..
Gazit, E. Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem. Soc. Rev. 2007 , 36 , 1263−1269..
Zhang, S. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 2003 , 21 , 1171−1178..
Das, P.; Pan, I.; Cohen, E.; Reches, M. Self-assembly of a metallo-peptide into a drug delivery system using a “switch on” displacement strategy. J. Mater. Chem. B 2018 , 6 , 8228−8237..
Zhang, H.; Fei, J.; Yan, X.; Wang, A.; Li, J. Enzyme-responsive release of doxorubicin from monodisperse dipeptide-based nanocarriers for highly efficient cancer treatment in vitro . Adv. Funct. Mater. 2015 , 25 , 1193−1204..
Liu, D.; Wang, Y. Y.; Sun, Y. C.; Han, Y. Y.; Cui, J.; Jiang, W. Self-assembly behavior of symmetrical linear abca tetrablock copolymer: a self-consistent field theory study. Chinese J. Polym. Sci. 2018 , 36 , 888−896..
Adler-Abramovich, L.; Gazit, E. The physical properties of supramolecular peptide assemblies: from building block association to technological applications. Chem. Soc. Rev. 2014 , 43 , 6881−6893..
Tao, K.; Levin, A.; Adler-Abramovich, L.; Gazit, E. Fmoc-modified amino acids and short peptides: simple bio-inspired building block s for the fabrication of functional materials. Chem. Soc. Rev. 2016 , 45 , 3935−3953..
Li, H.; Carter, J. D.; Labean, T. H. Nanofabrication by DNA self-assembly. Mater. Today 2010 , 12 , 24−32..
Frederix, P. W. J. M.; Scott, G. G.; Abul-Haija, Y. M.; Kalafatovic, D.; Pappas, C. G.; Javid, N.; Hunt, N. T.; Ulijn, R. V.; Tuttle, T. Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels. Nat. Chem. 2015 , 7 , 30−37..
Su, Y.; Liu, J.; Yang, D.; Hu, W.; Jiang, X.; Wang, Z. L.; Yang, R. Electric field-assisted self-assembly of diphenylalanine peptides for high-performance energy conversion. ACS Mater. Lett. 2023 , 5 , 2317−2323..
Lin, S.; Sun, H.; Cornel, E. J.; Jiang, J. H.; Zhu, Y. Q.; Fan, Z.; Du, J. Z. Denting nanospheres with a short peptide. Chinese J. Polym. Sci. 2021 , 39 , 1538−1549..
Yemini, M.; Reches, M.; Rishpon, J.; Gazit, E. Novel electrochemical biosensing platform using self-assembled peptide nanotubes. Nano Lett. 2005 , 5 , 183−186..
Yan, X.; Zhu, P.; Li, J. Self-assembly and application of diphenylalanine-based nanostructures. Chem. Soc. Rev. 2010 , 39 , 1−15..
Nguyen, V.; Zhu, R.; Jenkins, K.; Yang, R. Self-assembly of diphenylalanine peptide with controlled polarization for power generation. Nat. Commun. 2016 , 7 , 13566..
Ji, W.; Tang, Y.; Makam, P.; Yao, Y.; Jiao, R.; Cai, K.; Wei, G.; Gazit, E. Expanding the structural diversity and functional scope of diphenylalanine-based peptide architectures by hierarchical coassembly. J. Am. Chem. Soc. 2021 , 143 , 17633−17645..
Guo, C.; Luo, Y.; Zhou, R.; Wei, G. Probing the self-assembly mechanism of diphenylalanine-based peptide nanovesicles and nanotubes. ACS Nano 2012 , 6 , 3907−3918..
Datta, D.; Tiwari, O.; Ganesh, K. N. New archetypes in self-assembled Phe-Phe motif induced nanostructures from nucleoside conjugated-diphenylalanines. Nanoscale 2018 , 10 , 3212−3224..
Na, N.; Mu, X.; Liu, Q.; Wen, J.; Wang, F.; Ouyang, J. Self-assembly of diphenylalanine peptides into microtubes with "turn on" fluorescence using an aggregation-induced emission molecule. Chem. Commun. 2013 , 49 , 10076..
Wang, Y.; Wang, K.; Zhao, X.; Xu, X.; Sun, T. Influence of pH on the self-assembly of diphenylalanine peptides: molecular insights from coarse-grained simulations. Soft Matter 2023 , 19 , 5749−5757..
Lee, J. S.; Yoon, I.; Kim, J.; Ihee, H.; Kim, B.; Park, C. B. Self-assembly of semiconducting photoluminescent peptide nanowires in the vapor phase. Angew. Chem., Int. Ed. 2011 , 50 , 1164−1167..
Hauser, C. A. E.; Zhang, S. Peptides as biological semiconductors. Nature 2010 , 468 , 516−517..
Zhu, P.; Yan, X.; Su, Y.; Yang, Y.; Li, J. Solvent-induced structural transition of self-assembled dipeptide: from organogels to microcrystals. Chem-Eur. J. 2010 , 16 , 3176−3183..
Zhang, G.; Liang, Y.; Wang, Y.; Li, Q.; Qi, W.; Zhang, W.; Su, R.; He, Z. Chirality-dependent copper-diphenylalanine assemblies with tough layered structure and enhanced catalytic performance. ACS Nano 2022 , 16 , 6866−6877..
Smith, A. M.; Williams, R. J.; Tang, C.; Coppo, P.; Collins, R. F.; Turner, M. L.; Saiani, A.; Ulijn, R. V. Fmoc-diphenylalanine self assembles to a hydrogel via a novel architecture based on π – π interlocked β -sheets. Adv. Mater. 2008 , 20 , 37−41..
Adler-Abramovich, L.; Kol, N.; Yanai, I.; Barlam, D.; Shneck, R. Z.; Gazit, E.; Rousso, I. Self-assembled organic nanostructures with metallic-like stiffness. Angew. Chem., Int. Ed. 2010 , 49 , 9939−9942..
Braun, H. G.; Cardoso, A. Z. Self-assembly of Fmoc-diphenylalanine inside liquid marbles. Colloid. Surface B 2012 , 97 , 43−50..
Reches, M.; Gazit, E. Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides. Nano Lett. 2004 , 4 , 581−585..
Reches, M.; Gazit, E. Self-assembly of peptide nanotubes and amyloid-like structures by charged-termini-capped diphenylalanine peptide analogues. Isr. J. Chem. 2005 , 45 , 363−371..
Levin, A.; Michaels, T. C. T.; Mason, T. O.; Müller, T.; Adler-Abramovich, L.; Mahadevan, L.; Cates, M. E.; Gazit, E.; Knowles, T. P. J. Self-assembly-mediated release of peptide nanoparticles through jets across microdroplet interfaces. ACS Appl. Mater. Interfaces 2018 , 10 , 27578−27583..
Das, P.; Reches, M. Single-stranded DNA detection by solvent-induced assemblies of a metallo-peptide-based complex. Nanoscale 2016 , 8 , 9527−9536..
Arul, A.; Rana, P.; Das, K.; Pan, I.; Mandal, D.; Stewart, A.; Maity, B.; Ghosh, S.; Das, P. Fabrication of self-assembled nanostructures for intracellular drug delivery from diphenylalanine analogues with rigid or flexible chemical linkers. Nanoscale Adv. 2021 , 3 , 6176−6190..
Peter, C.; Delle Site, L.; Kremer, K. Classical simulations from the atomistic to the mesoscale and back: coarse graining an azobenzene liquid crystal. Soft Matter 2008 , 4 , 85 9−869..
Rajagopalan, R. Simulations of self-assembling systems. Curr. Opin. Colloid In 2001 , 6 , 357−365..
Klein, M. L.; Shinoda, W. Large-scale molecular dynamics simulations of self-assembling systems. Science 2008 , 321 , 798−800..
Yan, M.; Zhang, Y. T.; Wang, X. H. Nanoparticle-filled abc star triblock copolymers: a dissipative particle dynamics study. Chinese J. Polym. Sci. 2023 , 41 , 1462−1476..
Zeng, W. T.; Feng, W. S.; Zhang, X.; Yao, Y.; Xu, B. B.; Lin, S. L. Insight into the solution self-assembly of amphiphilic asymmetric brush copolymers via computer simulations. Chinese J. Polym. Sci . 2025 , 43 , 132−140..
Hoogerbrugge, P. J.; Koelman, J. M. V. A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 1992 , 19 , 155−160..
Guo, C.; Luo, Y.; Zhou, R.; Wei, G. Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides. Nanoscale 2014 , 6 , 2800−2811..
Pellach, M.; Mondal, S.; Shimon, L.; Adler-Abramovich, L.; Buzhansky, L.; Gazit, E. Molecular engineering of self-assembling diphenylalanine analogues results in formation of distinctive microstructures. Chem. Mater . 2016 , 28 , 4341−4348..
Guo, C.; Arnon, Z. A.; Qi, R.; Zhang, Q.; Adler-Abramovich, L.; Gazit, E.; Wei, G. Expanding the nanoarchitectural diversity through aromatic di- and tri-peptide coassembly: nanostructures and molecular mechanisms. ACS Nano 2016 , 10 , 8316−8324..
Jeon, J.; Shell, M. S. Self-assembly of cyclo-diphenylalanine peptides in vacuum. J. Phys. Chem. B 2014 , 118 , 6644−6652..
Chakraborty, P.; Tang, Y.; Guterman, T.; Arnon, Z. A.;Yao, Y.; Wei, G.; Gazit, E. Co-assembly between fmoc diphenylalanine and diphenylalanine within a 3d fibrous viscous network confers atypical curvature and branching. Angew. Chem., Int. Ed. 2020 , 59 , 23731−23739..
Soddemann, T.; Dünweg, B.; Kremer, K. Dissipative particle dynamics: a useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations. Phys. Rev. E 2003 , 68 , 046702..
Groot, R. D.; Warren, P. B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 1997 , 107 , 4423−4435..
Feng, Y. H.; Zhang, X. P.; Zhao, Z. Q.; Guo, X. D. Dissipative particle dynamics aided design of drug delivery systems: a review. Mol. Pharmaceutics 2020 , 17 , 1778−1799..
Guo, X. D.; Tan, J. P. K.; Zhang, L. J.; Khan, M.; Liu, S. Q.; Yang, Y. Y.; Qian, Y. Phase behavior study of paclitaxel loaded amphiphilic copolymer in two solvents by dissipative particle dynamics simulations. Chem. Phys. Lett. 2009 , 473 , 336−342..
Wang, Y.; Chen, B. Z.; Liu, Y. J.; Wu, Z. M.; Guo, X. D. Application of mesoscale simulation to explore the aggregate morphology of pH-sensitive nanoparticles used as the oral drug delivery carriers under different conditions. Colloid Surf. B 2017 , 151 , 280−286..
0
浏览量
30
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构