FOLLOWUS
a.School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
b.School of Information and Communication Engineering, Dalian Minzu University, Dalian 116600, China
c.School of Journalism and Communication, Beijing Normal University, Zhuhai 519085, China
d.University of Naples Federico II, Department of Chemical, Materials and Production Engineering, Piazzale V. Tecchio, 80, 80125 Napoli, Italy
e.State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
zhaoying@dlnu.edu.cn (Y.Z.)
youliangzhu@jlu.edu.cn (Y.L.Z.)
bscao@dlnu.edu.cn (B.S.C.)
收稿日期:2024-11-19,
修回日期:2024-12-27,
录用日期:2025-01-11,
网络出版日期:2025-02-18,
纸质出版日期:2025-03-01
Scan QR Code
Liu, S. L.; Sui, T.; Xu, S.; Xu, X. K.; Milano, G.; Zhao, Y.; Zhu, Y. L.; Cao, B. S. Strategic regulation of carbon nanotube dispersion with triblock copolymer phase domains: insights from molecular simulations. Chinese J. Polym. Sci. 2025, 43, 517–532
Shao-Long Liu, Tang Sui, Shuang Xu, et al. Strategic Regulation of Carbon Nanotube Dispersion with Triblock Copolymer Phase Domains: Insights from Molecular Simulations[J]. Chinese journal of polymer science, 2025, 43(3): 517-532.
Liu, S. L.; Sui, T.; Xu, S.; Xu, X. K.; Milano, G.; Zhao, Y.; Zhu, Y. L.; Cao, B. S. Strategic regulation of carbon nanotube dispersion with triblock copolymer phase domains: insights from molecular simulations. Chinese J. Polym. Sci. 2025, 43, 517–532 DOI: 10.1007/s10118-025-3295-9.
Shao-Long Liu, Tang Sui, Shuang Xu, et al. Strategic Regulation of Carbon Nanotube Dispersion with Triblock Copolymer Phase Domains: Insights from Molecular Simulations[J]. Chinese journal of polymer science, 2025, 43(3): 517-532. DOI: 10.1007/s10118-025-3295-9.
This study investigates the dispersion of carbon nanotubes (CNTs) in a triblock copolymer polystyrene-polybutadiene-polystyrene (SBS) matrix using molecular simulations
revealing how the aspect ratio of CNTs and mechanical strain affect phase behavior and electrical conductivity of polymer nanocomposites
providing new insights for the design of polymer nanocomposites with high conductivity.
The strategic dispersion of carbon nanotubes (CNTs) within triblock copolymer matrix is key to fabricating nanocomposites with the desired electrical properties. This study investigated the self-assembly and electrical behavior of a polystyrene-polybutadiene-polystyrene (SBS) matrix with CNTs of different aspect ratios using hybrid particle-field molecular dynamics simulations. Structural factor analysis of the nanocomposites indicated that CNTs with higher aspect ratios promoted the transition of the SBS matrix from a bicontinuous to a lamellar phase. The resistor network algorithm method showed that the electrical conductivity of SBS and CNTs nanocomposites was influenced by the interplay between the CNTs aspect ratios
concentrations
and domain sizes of the triblock copolymer SBS. Our research sheds light on the relationship between CNTs dispersion and the electrical behavior of SBS/CNTs nanocomposites
guiding the engineering of materials to achieve desired electrical properties through the modulation of CNTs aspect ratios and tailored sizing of triblock copolymer domains.
Zhang, S.; Deng, Y.; Libanori, A.; Zhou, Y.; Yang, J.; Tat, T.; Yang, L.; Sun, W.; Zheng, P.; Zhu, Y.-L.; Chen, J.; Tan, S. C. In situ grown silver–polymer framework with coordination complexes for functional artificial tissues. Adv. Mater. 2023 , 35 , 2207916..
Lou, Z.; Wang, L.; Shen, G. Recent advances in smart wearable sensing systems. Adv. Mater. Technol. 2018 , 3 , 1800444..
Wu, Z.; Ding, H.; Tao, K.; Wei, Y.; Gui, X.; Shi, W.; Xie, X.; Wu, J. Ultrasensitive, stretchable, and fast-response temperature sensors based on hydrogel films for wearable applications. ACS Appl. Mater. Interfaces 2021 , 13 , 21854−21864..
Lai, Y. C.; Ye, B. W.; L u, C. F.; Chen, C. T.; Jao, M. H.; Su, W. F.; Hung, W. Y.; Lin, T. Y.; Chen, Y. F. Eextraordinarily sensitive and low-voltage operational cloth-based electronic skin for wearable sensing and multifunctional integration uses: a tactile-induced insulating-to-conducting transition. Adv. Funct. Mater. 2016 , 26 , 1286−1295..
Cui, C.; Fu, Q.; Meng, L.; Hao, S.; Dai, R.; Yang, J. Recent progress in natural biopolymers conductive hydrogels for flexible wearable sensors and energy devices: materials, structures, and performance. ACS Appl. Bio Mater. 2021 , 4 , 85−121..
Shan, G.; Li, X.; Huang, W. AI-enabled wearable and flexible electronics for assessing full personal exposures. Innovation 2020 , 1 , 100031..
Li, J.; Chu, H.; Chen, Z.; Yiu, C. K.; Qu, Q.; Li, Z.; Yu, X. Recent advances in materials, devices and algorithms toward wearable continuous blood pressure monitoring. ACS Nano 2024 , 18 , 17407−17438..
Huang, F.; Wei, W.; Fan, Q.; Li, L.; Zhao, M.; Zhou, Z. Super-stretchable and adhesive cellulose nanofiber-reinforced conductive nanocomposite hydrogel for wearable Motion-monitoring sensor. J. Colloid Interface Sci. 2022 , 615 , 215−226..
Huang, H.; Zhang, X.; Dong, Z.; Zhao, X.; Guo, B. Nanocomposite conductive tough hydrogel based on metal coordination reinforced covalent pluronic f-127 micelle network for human motion sensing. J. Colloid Interface Sci. 2022 , 625 , 817−830..
Kościelniak, P.; Więckowska, A.; Karbarz, M.; Kaniewska, K. Nanocomposite hydrogel for skin motion sensing—an antifreezing, nanoreinforced hydrogel with decorated aumnps as a multicrosslinker. J. Colloid Interface Sci. 2024 , 674 , 392−404..
Wu, H.; Li, H.; Zhang, W.; Li, F.; Li, B.; Gao, Y.; Zhao, X.; Zhang, L. Percolation of polydisperse nanorods in polymer nanocomposites: insights from molecular dynamics simulation. Compos. Sci. Technol. 2020 , 196 , 108208..
Zhang, Q.; Zhang, L.; Lin, J. Percolating behavior of nanoparticles in block copolymer host: hybrid particle-field simulations. J. Phys. Chem. C 2017 , 121 , 23705−23715..
Grossiord, N.; Loos, J.; Regev, O.; Koning, C. E. Toolbox for dispersing carbon nanotubes into polymers to get conductive nanocomposites. Chem. Mater. 2006 , 18 , 1089−1099..
Escudero, A.; González-García, L.; Strahl, R.; Kang, D. J.; Drzic, J.; Kraus, T. Large-scale synthesis of hybrid conductive polymer–gold nanoparticles using “sacrificial” weakly binding ligands for printing electronics. Inorg. Chem. 2021 , 60 , 17103−17113..
Reiser, B.; González-García, L.; Kanelidis, I.; Maurer, J. H. M.; Kraus, T. Gold nanorods with conjugated polymer ligands: sintering-free conductive inks for printed electronics. Chem. Sci. 2016 , 7 , 4190−4196..
Drzic, J.; Escudero, A.; González-García, L.; Kraus, T. Sacrificial ligand route to hybrid polythiophene–silver nanoparticles for sinter-free conductive inks. Inorg. Chem. Front. 2023 , 10 , 1552−1560..
Wang, Z.; Chen, J.; Cong, Y.; Zhang, H.; Xu, T.; Nie, L.; Fu, J. Ultrastretchable strain sensors and arrays with high sensitivity and linearity based on super tough conductive hydrogels. Chem. Mater. 2018 , 30 , 8062−8069..
Peng, S.; Yu, Y.; Wu, S.; Wang, C. H. Conductive polymer nanocomposites fo r stretchable electronics: material selection, design, and applications. ACS Appl. Mater. Interfaces 2021 , 13 , 43831−43854..
Peng, S.; Wu, S.; Zhang, F.; Wang, C. H. Stretchable nanocomposite conductors enabled by 3D segregated dual-filler network. Adv. Mater. Technol. 2019 , 4 , 1900060..
Zhang, F.; Wu, S.; Peng, S.; Sha, Z.; Wang, C. H. Synergism of binary carbon nanofibres and graphene nanoplates in improving sensitivity and stability of stretchable strain sensors. Compos. Sci. Technol. 2019 , 172 , 7−16..
Sohrabi, B.; Poorgholami-Bejarpasi, N.; Nayeri, N. Dispersion of carbon nanotubes using mixed surfactants: experimental and molecular dynamics simulation studies. J. Phys. Chem. B 2014 , 118 , 3094−3103..
Nourian, P.; Lawrence, J.; Peters, A. J. Interparticle interactions of dendrimer, comb, and linear grafted nanoparticles via coarse-grained molecular dynamics simulations. Macromolecules 2024 , 57 , 5143−5154..
Jafarzadeh, S.; Farzaneh, A.; Haddadi-Asl, V.; Jouibari, I. S. A review on electrically conductive polyurethane nanocomposites: from principle to application. Polym. Compos. 2023 , 44 , 8266−8302..
Yang, L.; Pan, L.; Xiang, H.; Fei, X.; Zhu, M. Organic–inorganic hybrid conductive network to enhance the electrical conductivity of graphene-hybridized polymeric fibers. Chem. Mater. 2022 , 34 , 2049−2058..
Gao, Y.; Qu, F.; Wang, W.; Li, F.; Zhao, X.; Zhang, L. Increasing the electrical conductivity of polymer nanocomposites under the external field by tuning nanofiller shape. Compos. Sci. Technol. 2019 , 176 , 37−45..
Wu, H.; Ma, R.; Wang, Y.; Zhao, X.; Zhang, L.; Gao, Y. Manipulating the percolated network of nanorods in polymer matrix by adding non-conductive nanospheres: a molecular dynamics simulation. Compos. Sci. Technol 2022 , 229 , 109694..
Li, Y.; Lu, H.; Zhang, Z. Y.; Liu, H.; Sun, Z. Y. Network formation and mechanical stretching of nanocomposite fabricated by crosslinking reaction of polymer-grafted nanoparticles. Compos. Sci. Technol. 2022 , 227 , 109605..
Xue, Y. H.; He, M. W.; Liu, X. L.; Xing, J. Y.; Liu, H. Preparation of nanoparticles grafted with bimodal-bidisperse polymers in nanocomposite. Compos. Sci. Technol. 2020 , 197 , 108250..
Mao, J.; Zhou, J.; Liu, H. One-potstrategy for the preparation of nanoparticles grafted with bimodal polymers: an in-silico insight. Compos. Sci. Technol. 2024 , 251 , 110583..
Abousalman-Rezvani, Z.; Eskandari, P.; Roghani-Mamaqani, H.; Salami-Kalajahi, M. Functionalization of carbon nanotubes by combination of controlled radical polymerization and “grafting to” method. Adv. Colloid Interface Sci. 2020 , 278 , 102126..
Wang, F.; Zhao, S.; Jiang, Q.; Li, R.; Zhao, Y.; Huang, Y.; Wu, X.; Wang, B.; Zhang, R. Advanced functional carbon nanotube fibers from preparation to application. Cell Rep. Phys. Sci. 2022 , 3 , 100989..
Tang, Y.; Cai, T.; Lin, J.; Zhang, L. Precise control over positioning and orientation of nanorods in block copolymer nanocomposites via regulation of coassembly pathways. Macromolecules 2023 , 56 , 2123−2136..
Zhang, L.; Lin, J. Hierarchically ordered nanocomposites self-assembled from linear-alternating block copolymer/nanoparticle mixture. Macromolecules 2009 , 42 , 1410−1414..
Coleman, J. N.; Khan, U.; Blau, W. J.; Gun’ko, Y. K. Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 2006 , 44 , 1624−1652..
Sahoo, N. G.; Rana, S.; Cho, J. W.; Li, L.; Chan, S. H. Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 2010 , 35 , 837−867..
Liu, S.; Chevali, V. S.; Xu, Z.; Hui, D.; Wang, H. A review of extending performance of epoxy resins using carbon nanomaterials. Compos. Part B Eng. 2018 , 136 , 197−214..
Zaman, I.; Kuan, H.-C.; Dai, J.; Kawashima, N.; Michelmore, A.; Sovi, A.; Dong, S.; Luong, L.; Ma, J. From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites. Nanoscale 2012 , 4 , 4578..
Wang, Q.;Shi, W.; Zhu, B.; Su, D. S. An effective and green h 2 o 2 /h 2 o/o 3 oxidation method for carbon nanotube to reinforce epoxy resin. J. Mater. Sci. Technol. 2020 , 40 , 24−30..
Watters, A.; Cuadra, J.; Kontsos, A.; Palmese, G. Processing-structure–property relationships of swnt-epoxy composites prepared using ionic liquids. Part A Appl. Sci. Manuf 2015 , 73 , 269−276..
Maghsoudlou, M. A.; Barbaz Isfahani, R.; Saber-Samandari, S.; Sadighi, M. Effect of interphase, curvature and agglomeration ofswcnts on mechanical properties of polymer-based nanocomposites: experimental and numerical investigations. Compos. Part B Eng. 2019 , 175 , 107119..
Yazdanparast, R.; Rafiee, R. Investigating the influence of pull-out speed on the interfacial properties and the pull-out behavior of cnt/polymer nanocomposites. Compos. Struct. 2023 , 316 , 117049..
Hoseini, A. H. A.; Arjmand, M.; Sundararaj, U.; Trifkovic, M. Significance of interfacial interaction and agglomerates on electrical properties of polymer-carbon nanotube nanocomposites. Mater. Des. 2017 , 125 , 126−134..
Zhao, Y.; Byshkin, M.; Cong, Y.; Kawakatsu, T.; Guadagno, L.; De Nicola, A.; Yu, N.; Milano, G.; Dong, B. Self-assembly of carbon nanotubes in polymer melts: simulation of structural and electrical behaviour by hybrid particle-field molecular dynamics. Nanoscale 2016 , 8 , 15538−15552..
Zhao, Y.; Milano, G.; Cong, Y.; Yu, N.; He, Y.; Cong, Y.; Yuan, Q.; Dong, B. Self-assembled morphologies and percolation probability of mixed carbon fillers in the diblock copolymer template: hybrid particle-field molecular dynamics simulation. J. Phys. Chem. C 2015 , 119 , 25009−25022..
Milano, G.; Sevink, G. J. A.; Lu, Z. Y.; Zhao, Y.; De Nicola, A.; Munaò, G.; Kawakatsu, T. Hybrid particle-field molecular dynamics: a primer. in Comprehensive Computational Chemistry , 1 st ed., Elsevier, Amsterdam, 2023 , p. V3-636-V3-659..
Milano, G.; Kawakatsu, T. Hybrid particle-field molecular dynamics simulations for dense polymer systems. J. Chem. Phys. 2009 , 130 , 214106..
Zhu, Y. L.; Liu, H.; Li, Z. W.; Qian, H. J.; Milano, G.; Lu, Z. Y. Gala most: gpu-accelerated large-scale molecular simulation toolkit. J. Comput. Chem. 2013 , 34 , 2197−2211..
Caputo, S.; Hristov, V.; Nicola, A. D.; Herbst, H.; Pizzirusso, A.; Donati, G.; Munaò, G.; Albunia, A. R.; Milano, G. Efficient hybrid particle-field coarse-grained model of polymer filler interactions: multiscale hierarchical structure of carbon black particles in contact with polyethylene. J. Chem. Theory Comput. 2021 , 17 , 1755−1770..
Murakami, W.; De Nicola, A.; Oya, Y.; Takimoto, J.-I.; Celino, M.; Kawakatsu, T.; Milano, G. Theoretical and computational study of the sphere-to-rod transition of triton x-100 micellar nanoscale aggregates in aqueous solution: implications for membrane protein purification and membrane solubilization. ACS Appl. Nano Mater. 2021 , 4 , 4552−4561..
Ledum, M.; Carrer, M.; Sen, S.; Li, X.; Cascella, M.; Bore, S. L. Hylleraasmd: massively parallel hybrid particle-field molecular dynamics in python. J. Open Source Softw. 2023 , 8 , 4149..
Wu, Z.; Alberti, S. A. N.; Schneider, J.; Müller-Plathe, F. Knotting behaviour of polymer chains in the melt state for soft-core models with and without slip-springs. J. Phys.: Condens. Matter. 2021 , 33 , 244001..
Ledum, M.; Sen, S.; Li, X.; Carrer, M.; Feng, Y.; Cascella, M.; Bore, S. L. Hylleraasmd: a domain decomposition-based hybrid particle-field software for multiscale simulations of soft matter. J. Chem. Theory Comput. 2023 , 19 , 2939−2952..
Yue, T.; Zhao, H.; Wei, Y.; Duan, P.; Zhang, L.; Wang, J.; Liu, J. Influence of nanoparticles on the structure, dynamics, and mechanical behavior of nonconcatenated ring polymers. Macromolecules 2024 , 57 , 1207−1219..
Wang, J.; Guo, X.; Xue, J. Biofilm-developed microplastics as vectors of pollutants in aquatic environments. Environ. Sci. Technol. 2021 , 55 , 12780−12790..
Verdurmen, E. M.; Albers, J. G.; German, A. L. Polybutadiene latex particle size distribution analysis utilizing a disk centrifuge. Colloid Polym Sci. 1994 , 272 , 57−63..
Sema Özen, A.; Sen, U.; Atilgan, C. Complete mapping of the morphologies of some linear and graft fluorinated co-oligomers in an aprotic solvent by dissipative particle dynamics. J. Chem. Phys. 2006 , 124 , 064905..
Maiti, A.; Wescott, J.; Kung, P. Nanotube–polymer composites: insights from flory–huggins theory and mesoscale simulations. Mol. Simul. 2005 , 31 , 143−149..
Mieczkowski, R. The determination of the solubility parameter components of polystyrene by partial specific volume measurements. Eur. Polym. J. 1988 , 24 , 1185−1189..
Rodríguez, J. L.; Minardi, R. M.; Ciolino, A.; Pieroni, O.; Vuano, B.; Schulz, E. P.; Schulz, P. C. Effect of an amphiphilic polymer on the evaporation behavior of its solutions in toluene and in water. Colloids Surf., A 2009 , 352 , 74−78..
Bao, W. S.; Meguid, S. A.; Zhu, Z. H.; Weng, G. J. Tunneling resistance and its effect on the electrical conductivity of carbon nanotube nanocomposites. J. Appl. Phys. 2012 , 111 , 093726..
Haghgoo, M.; Ansari, R.; Hassanzadeh-Aghdam, M. K. Prediction of electrical conductivity of carbon fiber-carbon nanotube-reinforced polymer hybrid composites. Compos. Part B Eng. 2019 , 167 , 728−735..
Chanda, A.; Sinha, S. K.; Datla, N. V. Electrical conductivity of random and aligned nanocomposites: theoretical models and experimental validation. Compos. Part A Appl. Sci. Manuf. 2021 , 149 , 106543..
Mora, A. A morphology study of nanofiller networks in polymer nanocomposites: improving their electrical conductivity through better doping strategies. Kaust Research Repository . 2018 . DOI: 10.25781/KAUST-OS82H.
Haghgoo, M.; Hassanzadeh-Aghdam, M. K.; Ansari, R. A comprehensive evaluation of piezoresistive response and percolation behavior of multiscale polymer-based nanocomposites. Compos. Part A Appl. Sci. Manuf. 2020 , 130 , 105735..
Newman, M. E. J. The structure and function of complex networks. Slam Rev. 2003 , 45 , 167−256..
Ai, J.; Li, L.; Su, Z.; Jiang, L.; Xiong, N. Node-importance identification in complex networks via neighbors average degree. in 2016 Chinese Control and Decision Conference (CCDC) , Yinchuan, China, 2016 , p 1298–1303. DOI:10.1109/CCDC.2016.7531185.
Berenbrink, P.; Krayenhoff, B.; Mallmann-Trenn, F. Estimating the number of connected components in sublinear time. Inf. Process. Lett. 2014 , 114 , 639−642..
Glück, R. (Algebraic investigation of connected components. in Relational and Algebraic Methods in Computer Science . RAMICS 2017. Lecture Notes in Computer Science, vol 10226, Springer, Cham, 2017 , p. 109–126..
Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D. Complex networks: structure and dynamics. Phys. Rep. 2006 , 424 , 175−308..
Barrat, A.; Barthélemy, M.; Pastor-Satorras, R.; Vespignani, A. The architecture of complex weighted networks. Proc. Natl. Acad. Sci. U.S.A. 2004 , 101 , 3747−3752..
Dorogovtsev, S. N.; Mendes, J. F. F. Evolution of networks. Adv. Phys. 2002 , 51 , 1079−1187..
Mukherjee, S. Complex network analysis in cricket: community structure, player’s role and performance index. Adv. Complex Syst. 2013 , 16 , 1350031..
Leskovec, J.; Kleinberg, J.; Faloutsos, C. Graphs over time: densification laws, shrinking diameters and possible explanations. in Knowledge Discovery and Data Mining . Discov. 2005 , p 177–187..
Intanagonwiwat, C.; Estrin, D.; Govindan, R.; Heidemann, J. Impact of network density on data aggregation in wireless sensor networks. in Proceedings 22 nd International Conference on Distributed Computing Systems , Vienna, Austria, 2002 , p 457–458..
Mayhew, B. H.; Levinger, R. L. Size and the density of interaction in human aggregates. Am. J. Sociol. 1976 , 82 , 86−110..
Pramanik, C.; Gissinger, J. R.; Kumar, S.; Heinz, H. Carbon nanotube dispersion in solvents and polymer solutions: mechanisms, assembly, and preferences. ACS Nano 2017 , 11 , 12805−12816..
Chen, L. J.; Lu, Z. Y.; Qian, H. J.; Li, Z. S.; Sun, C. C. The effects of lowe–andersen temperature controlling method on the polymer properties in mesoscopic simulations. J. Chem. Phys. 2005 , 122 , 104907..
Li, Y.; Qian, H. J.; Lu, Z. Y.; Shi, A. C. Enhancing composition window of bicontinuous structures by designed polydispersity distribution of aba triblock copolymers. Polymer 2013 , 54 , 6253−6260..
Zhao, Y.; Liu, H.; Lu, Z.; Sun, C. Dissipative particle dynamics simulations of domain growth and phase separation in binary immiscible fluids. Chin. J. Chem. Phys. 2008 , 21 , 451−456..
Liu, Z. Y.; Xiao, B. L.; Wang, W. G.; Ma, Z. Y. Elevated temperature tensile properties and thermal expansion of cnt/2009al composites. Compos. Sci. Technol. 2012 , 72 , 1826−1833..
Liu, E.; Li, Z.; Li, F.; Wang, B. The network structure formation of cu-cnts composites during multi-directional forging process and its mechanical properties. Nano. 2021 , 16 , 2150070..
Zhang, S.; Shao, T.; Bekaroglu, S. S. K.; Karanfil, T. The impacts of aggregation and surface chemistry of carbon nanotubes on the adsorption of synthetic organic compounds. Environ. Sci. Technol. 2009 , 43 , 5719−5725..
Choudhary, M.; Sharma, A.; Aravind Raj, S.; Sultan, M. T. H.; Hui, D.; Shah, A. U. M. Contemporary review on carbon nanotube (cnt) composites and their impact on multifarious applications. Nanotechnol. Rev. 2022 , 11 , 2632−2660..
Zhao, J.; Jiang, J. W.; Jia, Y.; Guo, W.; Rabczuk, T. A theoretical analysis of cohesive energy between carbon nanotubes, graphene and substrates. Carbon 2013 , 57 , 108−119..
Taylor, P. A.; Wang, J.; Ge, T.; O’Connor, T. C.; Grest, G. S. Smoother surfaces enhance diffusion of nanorods in entangled polymer melts. Macromolecules 2024 , 57 , 2482−2489..
Tarlton, T.; Sullivan, E.; Brown, J.; Derosa, P. A. The role of agglomeration in the conductivity of carbon nanotube composites near percolation. J. Appl. Phys. 2017 , 121 , 085103..
Morovvati, M.; Mollaei-Dariani, B.; Niazi Angili, S.; Toghraie, D. The effects of single-walled carbon nanotubes dispersion and agglomeration in aluminum matrix: fabrication and finite element simulation. Measurement 2023 , 218 , 113144..
Gong, S.; Zhu, Z. H.; Li, J.; Meguid, S. A. Modeling and characterization of carbon nanotube agglomeration effect on electrical conductivity of carbon nanotube polymer composites. J. Appl. Phys. 2014 , 116 , 194306..
Cho, B.-K.; Jain, A.; Gruner, S. M.; Wiesner, U. Mesophase structure-mechanical and ionic transport correlations in extended amphiphilic dendrons. Science 2004 , 305 , 1598−1601..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构