FOLLOWUS
a.Department of Chemistry, School of Sciences and Guangdong Provincial Key Laboratory of Mathematical and Neural Dynamical Systems, Great Bay University, Dongguan 523000, China
b.Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
laihaiwang@gbu.edu.cn (H.W.L.)
makoto.2v@kyoto-u.ac.jp (M.O.)
收稿日期:2024-10-31,
修回日期:2024-11-23,
录用日期:2024-11-27,
网络出版日期:2025-02-24,
纸质出版日期:2025-05-20
Scan QR Code
Lai, H. W.; Ouchi, M. Backbone degradable polymers via chain-growth radical polymerization. Chinese J. Polym. Sci. 2025, 43, 887–907
Hai-Wang Lai, Makoto Ouchi. Backbone Degradable Polymers
Lai, H. W.; Ouchi, M. Backbone degradable polymers via chain-growth radical polymerization. Chinese J. Polym. Sci. 2025, 43, 887–907 DOI: 10.1007/s10118-025-3278-x.
Hai-Wang Lai, Makoto Ouchi. Backbone Degradable Polymers
This review summarizes recent advances in endowing vinyl polymers with degradability
aiming to reduce their environmental impact and enhance their application in bio-relevant areas.
Chain-growth radical polymerization of vinyl monomers is essential for producing a wide range of materials with properties tailored to specific applications. However
the inherent resistance of the polymer's C―C backbone to degradation raises significant concerns regarding long-term environmental persistence
which also limits their potential in biomedical applications. To address these challenges
researchers have developed strategies to either degrade preexisting vinyl polymers or incorporate cleavable units into the backbone to modify them with enhanced degradability. This review explores the various approaches aimed at achieving backbone degradability in chain-growth radical polymerization of vinyl monomers
while also highlighting future research directions for the development of application-driven degradable vinyl polymers.
Matyjaszewski, K.; Davis, T. P., In Handbook of Radical Polymerization , 2002 ; pp. 117−186..
Martinez, M. R.; Matyjaszewski, K. Degradable and recyclable polymers by reversible deactivation radical polymerization. CCS Chem. 2022 , 4 , 2176−2211..
Rahimi, A.; García, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 2017 , 1 , 0046..
Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and chemical recycling of solid plasticwaste. Waste Manage. 2017 , 69 , 24−58..
Coates, G. W.; Getzler, Y. D. Y. L. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 2020 , 5 , 501−516..
Gurnani, P.; Perrier, S. Controlled radical polymerization in dispersed systems for biological applications. Prog. Polym. Sci. 2020 , 102 , 101209..
Boyer, C.; Bulmus, V.; Davis, T. P.; Ladmiral, V.; Liu, J.; Perrier, S. Bioapplications of RAFT polymerization. Chem. Rev. 2009 , 109 , 5402−5436..
Delplace, V.; Nicolas, J. Degradable vinyl polymers for biomedical applications. Nat. Chem. 2015 , 7 , 771−784..
Tardy, A.; Nicolas, J.; Gigmes, D.; Lefay, C.; Guillaneuf, Y. Radical ring-opening polymerization: scope, limitations, and application to (bio)degradable materials. Chem. Rev. 2017 , 117 , 1319−1406..
Lefay, C.; Guillaneuf, Y. Recyclable/degradable materials via the insertion of labile/cleavable bonds using a comonomer approach. Prog. Polym. Sci. 2023 , 147 , 101764..
Chin, M. T.; Diao, T. Industrial and laboratory technologies for the chemical recycling of plastic waste. ACS Catal. 2024 , 14 , 12437−12453..
Luzel, B.; Gil, N.; Désirée, P.; Monot, J.; Bourissou, D.; Siri, D.; Gigmes, D.; Martin-Vaca, B.; Lefay, C.; Guillaneuf, Y. Development of an efficient thionolactone for radical ring-opening polymerization by a combined theoretical/experimental approach. J. Am. Chem. Soc. 2023 , 145 , 27437−27449..
Lundberg, D. J.; Ko, K.; Kilgallon, L. J.; Johnson, J. A. Defining reactivity-deconstructability relationships for copolymerizations involving cleavable comonomer additives. ACS Macro Lett. 2024 , 13 , 521−527..
Sullivan, K. P.; Werner, A. Z.; Ramirez, K. J.; Ellis, L. D.; Bussard, J. R.; Black, B. A.; Brandner, D. G.; Bratti, F.; Buss, B. L.; Dong, X.; Haugen, S. J.; Ingraham, M. A.; Konev, M. O.; Michener, W. E.; Miscall, J.; Pardo, I.; Woodworth, S. P.; Guss, A. M.; Román-Leshkov, Y.; Stahl, S. S.; Beckham, G. T. Mixed plastics waste valorization through tandem chemical oxidation and biological funneling. Science 2022 , 378 , 207−211..
Gewert, B.; Plassmann, M. M.; MacLeod, M. Pathways for degradation of plastic polymers floating in the marine environment. Environ. Sci.: Process. Impacts 2015 , 17 , 1513−1521..
Ko, K.; Lundberg, D. J.; Johnson, A. M.; Johnson, J. A. Mechanism-guided discovery of cleavable comonomers for backbone deconstructable poly(methyl methacrylate). J. Am. Chem. Soc. 2024 , 146 , 9142−9154..
Makino, H.; Nishikawa, T.; Ouchi, M. Incorporation of a boryl pendant as the trigger in a methacrylate poly mer for backbone degradation. Chem. Commun. 2022 , 58 , 11957−11960..
Jones, G. R.; Wang, H. S.; Parkatzidis, K.; Whitfield, R.; Truong, N. P.; Anastasaki, A. Reversed controlled polymerization (RCP): depolymerization from well-defined polymers to monomers. J. Am. Chem. Soc. 2023 , 145 , 9898−9915..
Wang, H. S.; Truong, N. P.; Pei, Z.; Coote, M. L.; Anastasaki, A. Reversing RAFT polymerization: near-quantitative monomer generation via a catalyst-free depolymerization approach. J. Am. Chem. Soc. 2022 , 144 , 4678−4684..
De Luca Bossa, F.; Yilmaz, G.; Matyjaszewski, K. Fast bulk depolymerization of polymethacrylates by ATRP. ACS Macro Lett. 2023 , 12 , 1173−1178..
Xu, Z.; Sun, D.; Xu, J.; Yang, R.; Russell, J. D.; Liu, G. Progress and challenges in polystyrene recycling and upcycling. ChemSusChem 2024 , 17 , e202400474..
Wimberger, L.; Ng, G.; Boyer, C. Light-driven polymer recycling to monomers and small molecules. Nat. Commun. 2024 , 15 , 2510..
Abu Bakar, R.; Hepburn, K. S.; Keddie, J. L.; Roth, P. J. Degradable, ultraviolet-crosslinked pressure-sensitive adhesives made from thioester-functional acrylate copolymers. Angew. Chem. Int. Ed. 2023 , 62 , e202307009..
Purohit, V. B.; Pięta, M.; Pietrasik, J.; Plummer, C. M. Recent advances in the ring-opening polymerization of sulfur-containing monomers. Polym. Chem. 2022 , 13 , 4858−4878..
Bailey, W. J.; Ni, Z.; Wu, S. R. Synthesis of poly- ε -caprolactone via a free radical mechanism. Free radical ring-opening polymerization of 2-methylene-1,3-dioxepane. J. Polym. Sci.: Polym. Chem. Ed. 1982 , 20 , 3021−3030..
Tardy, A.; Gil, N.; Plummer, C. M.; Siri, D.; Gigmes, D.; Lefay, C.; Guillaneuf, Y. Polyesters by a radical pathway: rationalization of the cyclic ketene acetal efficiency. Angew. Chem. Int. Ed. 2020 , 59 , 14517−14526..
Deng, Y.; Mehner, F.; Gaitzsch, J. Current standing on radical ring-opening polymerizations of cyclic ketene acetals as homopolymers and copolymers with one another. Macromol. Rapid Commun. 2023 , 44 , 2200941..
Wickel, H.; Agarwal, S. Synthesis and characterization of copolymers of 5,6-benzo-2-methylene-1,3-dioxepane and styrene. Macromolecules 2003 , 36 , 6152−6159..
Hedir, G. G.; Bell, C. A.; O’Reilly, R. K.; Dove, A. P. Functional degradable polymers by radical ring-opening copolymerization of MDO and vinyl bromobutanoate: synthesis, degradability and post-polymerization modification. Biomacromolecules 2015 , 16 , 2049−2058..
Tardy, A.; Honoré, J. C.; Tran, J.; Siri, D.; Delplace, V.; Bataille, I.; Letourneur, D.; Perrier, J.; Nicoletti, C.; Maresca, M.; Lefay, C.; Gigmes, D.; Nicolas, J.; Guillaneuf, Y. Radical copolymerization of vinyl ethers and cyclic ketene acetals as a versatile platform to design functional polyesters. Angew. Chem. Int. Ed. 2017 , 56 , 16515−16520..
Barquero, A.; Zanoni, A.; Gabirondo, E.; González de San Román, E.; Hamzehlou, S.; Ximenis, M.; Moscatelli, D.; Sardon, H.; Leiza, J. R. Degradable alternating copolymers by radical copolymerization of 2-methylen-1,3-dioxepane and crotonate esters. ACS Macro Lett. 2024 , 13 , 368−374..
Hill, M. R.; Guégain, E.; Tran, J.; Figg, C. A.; Turner, A. C.; Nicolas, J.; Sumerlin, B. S. Radical ring-opening copolymerization of cyclic ketene acetals and maleimides affords homogeneous incorporation of degradable units. ACS Macro Lett. 2017 , 6 , 1071−1077..
Lai, H.; Ouchi, M. Backbone-degradable polymers via radical copolymerizations of pentafluorophenyl methacrylate with cyclic ketene acetal: pendant modification and efficient degradation by alternating-rich sequence. ACS Macro Lett. 2021 , 10 , 1223−1228..
Volz, H. K. H.; Agarwal, S. High T g poly(ester- co -vinyl)s with compositional homogeneity by radical ring-opening polymerization. ACS Appl. Polym. Mater. 2023 , 5 , 8754−8763..
Jiang, N. C.; Zhou, Z.; Niu, J. Quantitative, regiospecific, and stereoselective radical ring-opening polymerization of monosaccharide cyclic ketene acetals. J. Am. Chem. Soc. 2024 , 146 , 5056−5062..
Hedir, G.; Stubbs, C.; Aston, P.; Dove, A. P.; Gibson, M. I. Synthesis of degradable poly(vinyl alcohol) by radi cal ring-opening copolymerization and ice recrystallization inhibition activity. ACS Macro Lett. 2017 , 6 , 1404−1408..
Ren, L.; Speyerer, C.; Agarwal, S. Free-radical copolymerization behavior of 5,6-benzo-2-methylene-1,3-dioxepane and methacrylic acid via the in situ generation of 3-methyl-1,5-dihydrobenzo[ e ] [1,3 ] dioxepin-3-yl methacrylate and 2-(acetoxymethyl)benzyl methacrylate. Macromolecules 2007 , 40 , 7834−7841..
Mothe, S. R.; Chennamaneni, L. R.; Tan, J.; Lim, F. C. H.; Zhao, W.; Thoniyot, P. A Mechanistic study on the hydrolysis of cyclic ketene acetal (CKA) and proof of concept of polymerization in water. Macromol. Chem. Phys. 2023 , 224 , 2300221..
Kordes, B. R.; Ascherl, L.; Rüdinger, C.; Melchin, T.; Agarwal, S. Competition between hydrolysis and radical ring-opening polymerization of MDO in water. Who makes the race. Macromolecules 2023 , 56 , 1033−1044..
Carter, M. C. D.; Hejl, A.; Janco, M.; DeFelippis, J.; Yang, P.; Gallagher, M.; Liang, Y. Emulsion polymerization of 2-methylene-1,3-dioxepane and vinyl acetate: process analysis and characterization. Macromolecules 2023 , 56 , 5718 −5729..
Bingham, N. M.; Roth, P. J. Degradable vinyl copolymers through thiocarbonyl addition-ring-opening (TARO) polymerization. Chem. Commun. 2019 , 55 , 55−58..
Smith, R. A.; Fu, G.; McAteer, O.; Xu, M.; Gutekunst, W. R. Radical approach to thioester-containing polymers. J. Am. Chem. Soc. 2019 , 141 , 1446−1451..
Spick, M. P.; Bingham, N. M.; Li, Y.; de Jesus, J.; Costa, C.; Bailey, M. J.; Roth, P. J. Fully degradable thioester-functional homo- and alternating copolymers prepared through thiocarbonyl addition-ring-opening RAFT radical polymerization. Macromolecules 2020 , 53 , 539−547..
un Nisa, Q.; Theobald, W.; Hepburn, K. S.; Riddlestone, I.; Bingham, N. M.; Kopeć, M.; Roth, P. J. Degradable linear and bottlebrush thioester-functional copolymers through atom-transfer radical ring-opening copolymerization of a thionolactone. Macromolecules 2022 , 55 , 7392−7400..
Jazani, A. M.; Bernat, R.; Matyjaszewski, K. Visible light-induced photo-radical ring-opening copolymerization of thionolactone and acrylates. Polymer 2024 , 302 , 127032..
Gil, N.; Caron, B.; Siri, D.; Roche, J.; Hadiouch, S.; Khedaioui, D.; Ranque, S.; Cassagne, C.; Montarnal, D.; Gigmes, D.; Lefay, C.; Guillaneuf, Y. Degradable polystyrene via the cleavable comonomer approach. Macromolecules 2022 , 55 , 6680−6694..
Kiel, G. R.; Lundberg, D. J.; Prince, E.; Husted, K. E. L.; Johnson, A. M.; Lensch, V.; Li, S.; Shieh, P.; Johnson, J. A. Cleavable comonomers for chemically recyclable polystyrene: a general approach to vinyl polymer circularity. J. Am. Chem. Soc. 2022 , 144 , 12979−12988..
Prebihalo, E. A.; Luke, A. M.; Reddi, Y.; LaSalle, C. J.; Shah, V. M.; Cramer, C. J.; Reineke, T. M. Radical ring-opening polymerization of sustainably-derived thionoisochromanone. Chem. Sci. 2023 , 14 , 5689−5698..
Rix, M. F. I.; Collins, K.; Higgs, S. J.; Dodd, E. M.; Coles, S. J.; Bingham, N. M.; Roth, P. J. Insertion of degradable thioester linkages into styrene and methacrylate polymers: insights into thereactivity of thionolactones. Macromolecules 2023 , 56 , 9787−9795..
Ivanchenko, O.; Mazières, S.; Harrisson, S.; Destarac, M. Lactide-derived monomers for radical thiocarbonyl addition ring-opening copolymerisation. Polym. Chem. 2022 , 13 , 5525−5529..
Ivanchenko, O.; Mazières, S.; Mallet-Ladeira, S.; Harrisson, S.; Destarac, M. Radical copolymerization of thionoglycolide and derivatives for preparation of degradable vinyl polymers. Macromolecules 2024, 57 , 8059-8066..
Ivanchenko, O.; Authesserre, U.; Coste, G.; Mazières, S.; Destarac, M.; Harrisson, S. ε -Thionocaprolactone: an accessible monomer for preparation of degradable poly(vinyl esters) by radical ring-opening polymerization. Polym. Chem . 2021, 12 , 1931-1938..
Plummer, C. M.; Gil, N.; Dufils, P. E.; Wilson, D. J.; Lefay, C.; Gigmes, D.; Guillaneuf, Y. Mechanistic investigation of ε -thiono-caprolactone radical polymerization: an interesting tool to insert weak bonds into poly(vinyl esters). ACS Appl. Polym. Mater. 2021 , 3 , 3264−3271..
Kamiki, R.; Kubo, T.; Satoh, K. Addition-fragmentation ring-opening po lymerization of bio-based thiocarbonyl l-lactide for dual degradable vinyl copolymers. Macromol. Rapid Commun. 2023 , 44 , 2200537..
Ivanchenko, O.; Mazières, S.; Poli, R.; Harrisson, S.; Destarac, M. Ring size-reactivity relationship in radical ring-opening copolymerisation of thionolactones with vinyl pivalate. Polym. Chem. 2022 , 13 , 6284−6292..
Ivanchenko, O.; Mazières, S.; Harrisson, S.; Destarac, M. On-demand degradation of thioester/thioketal functions in vinyl pivalate-derived copolymers with thionolactones. Macromolecules 2023 , 56 , 4163−4171..
Dawson, F.; Kazmi, T.; Roth, P. J.; Kopeć, M. Strands vs . crosslinks: topology-dependent degradation and regelation of polyacrylate networks synthesised by RAFT polymerisation. Polym. Chem. 2023 , 14 , 5166−5177..
Elliss, H.; Dawson, F.; Nisa, Q. U.; Bingham, N. M.; Roth, P. J.; Kopeć, M. Fully degradable polyacrylate networks from conventional radical polymerization enabled by thionolactone addition. Macromolecules 2022 , 55 , 6695−6702..
Gil, N.; Thomas, C.; Mhanna, R.; Mauriello, J.; Maury, R.; Leuschel, B.; Malval, J. P.; Clément, J. L.; Gigmes, D.; Lefay, C.; Soppera, O.; Guillaneuf, Y. Thionolactone as a resin additive to prepare (bio)degradable 3D objects via VAT photopolymerization. Angew. Chem. Int. Ed. 2022 , 61 , e202117700..
Zhang, Z.; Xiong, Y.; Yang, P.; Li, Y.; Tang, R.; Nie, X.; Chen, G.; Wang, L. H.; Hong, C. Y.; You, Y. Z. Easy access to diverse multiblock copolymers with on-demand blocks via thioester-relayed in-chain cascade copolymerization. Angew. Chem. Int. Ed. 2023 , 62 , e202216685..
Prince, E.; Cheng, H. F.; Banal, J. L.; Johnson, J. A. Reversible Nucleic Acid Storage in Deconstructable Glassy Polymer Networks. J. Am. Chem. Soc . 2024 , 146, 25 , 17066−17074..
Galanopoulo, P.; Gil, N.; Gigmes, D.; Lefay, C.; Guillaneuf, Y.; Lages, M.; Nicolas, J.; Lansalot, M.; D'Agosto, F. One-step synthesis of degradable vinylic polymer-based latexes via aqueous radical emulsion polymerization. Angew. Chem. Int. Ed. 2022 , 61 , e202117498..
Galanopoulo, P.; Gil, N.; Gigmes, D.; Lefay, C.; Guillaneuf, Y.; Lages, M.; Nicolas, J .; D'Agosto, F.; Lansalot, M. RAFT-mediated emulsion polymerization-induced self-assembly for the synthesis of core-degradable waterborne particles. Angew. Chem. Int. Ed. 2023 , 62 , e202302093..
Lages, M.; Gil, N.; Galanopoulo, P.; Mougin, J.; Lefay, C.; Guillaneuf, Y.; Lansalot, M.; D’Agosto, F.; Nicolas, J. Degradable vinyl copolymer nanoparticles/latexes by aqueous nitroxide-mediated polymerization-induced self-assembly. Macromolecules 2022 , 55 , 9790−9801..
Lages, M.; Gil, N.; Galanopoulo, P.; Mougin, J.; Lefay, C.; Guillaneuf, Y.; Lansalot, M.; D’Agosto, F.; Nicolas, J. Degradable latexes by nitroxide-mediated aqueous seeded emulsion copolymerization using a thionolactone. Macromolecules 2023 , 56 , 7973−7983..
Bingham, N. M.; Nisa, Q. u.; Gupta, P.; Young, N. P.; Velliou, E.; Roth, P. J. Biocompatibility and physiological thiolytic degradability of radically made thioester-functional copolymers: opportunities for drug release. Biomacromolecules 2022 , 23 , 2031−2039..
Lages, M.; Pesenti, T.; Zhu, C.; Le, D.; Mougin, J.; Guillaneuf, Y.; Nicolas, J. Degradable polyisoprene by radical ring-opening polymerization and application to polymer prodrug nanoparticles. Chem. Sci. 2023 , 14 , 3311−3325..
Paulusse, J. M. J.; Amir, R. J.; Evans, R. A.; Hawker, C. J. Free radical polymers with tunable and selective bio- and chemical degradability. J. Am. Chem. Soc. 2009 , 131 , 9805−9812..
Huang, H.; Sun, B.; Huang, Y.; Niu, J. Radical cascade-triggered controlled ring-opening polymerization of macrocyclic monomers. J. Am. Chem. Soc. 2018 , 140 , 10402−10406..
Wang, W.; Zhou, Z.; Sathe, D.; Tang, X.; Moran, S.; Jin, J.; Haeffner, F.; Wang, J.; Niu, J. Degradable vinyl random copolymers via photocontrolled radical ring-opening cascade copolymerization. Angew. Chem. Int. Ed. 2022 , 61 , e202113302..
Wang, W.; Rondon, B.; Wang, Z.; Wang, J.; Niu, J. Macrocyclic allylic sulfone as a universal comonomer in organocatalyzed photocontrolled radical copolymerization with vinyl monomers. Macromolecules 2023 , 56 , 2052−2061..
Huang, H.; Wang, W.; Zhou, Z.; Sun, B.; An, M.; Haeffner, F.; Niu, J. Radical ring-closing/ring-opening cascade polymerization. J. Am. Chem. Soc. 2019 , 141 , 12493−12497..
Do, P. T.; Poad, B. L. J.; Frisch, H. Programming photodegradability into vinylic polymers via radical ring-opening polymerization. Angew. Chem. Int. Ed. 2023 , 62 , e202213511..
Do, P. T.; Sbordone, F.; Kalmer, H.; Sokolova, A.; Zhang, C.; Thai, L. D.; Golberg, D. V.; Chapman, R.; Poad, B. L. J.; Frisch, H. Main chain selective polymer degradation: controlled by the wavelength and assembly. Chem. Sci. 2024 , 15 , 12410−12419..
Sbordone, F.; Veskova, J.; Richardson, B.; Do, P. T.; Micallef, A.; Frisch, H. Embedding peptides into synthetic polymers: radical ring-opening copolymerization of cyclic peptides. J. Am. Chem. Soc. 2023 , 145 , 6221−6229..
Pięta, M.; Purohit, V. B.; Pietrasik, J.; Plummer, C. M. Disulfide-containing monomers in chain-growth polymerization. Polym. Chem. 2023 , 14 , 7−31..
Raeisi, M.; Tsarevsky, N. V. Radical ring-opening polymerization of lipoates: kinetic and thermodynamic aspects. J. Polym. Sci. 2021 , 59 , 675−684..
Shi, C. Y.; Zhang, Q.; Wang, B. S.; Chen, M.; Qu, D. H. Intrinsically photopolymerizable dynamic polymers derived from a natural small molecule. ACS Appl. Mater. Interfaces 2021 , 13 , 44860−44867..
Pal, S.; Shin, J.; DeFrates, K.; Arslan, M.; Dale, K.; Chen, H.; Ramirez, D.; Messersmith, P. B. Recyclable surgical, consumer, and industrial adhesives of poly( α -lipoic acid). Science 2024 , 385 , 877−883..
Zhang, J.; Wang, M.; Yao, X.; Liu, J.; Yan, B. Thioctic acid-based solvent-free and recoverable adhesive for dry/wet environments. ACS Appl. Mater. Interfaces 2024 , 16 , 54685−54692..
Machado, T. O.; Stubbs, C. J.; Chiaradia, V.; Alraddadi, M. A.; Brandolese, A.; Worch, J. C.; Dove, A. P. A renewably sourced, circular photopolymer resin for additive manufacturing. Nature 2024 , 629 , 1069−1074..
Suzuki, T.; Nambu, Y.; Endo, T. Radical copolymerization of lipoamide with vinyl monomers. Macromolecules 1990 , 23 , 1579−1582..
Albanese, K. R.; Morris, P. T.; Read de Alaniz, J.; Bates, C. M.; Hawker, C. J. Controlled-radical polymerization of α -lipoic acid: a general route to degradable vinyl copolymers. J. Am. Chem. Soc. 2023 , 145 , 22728−22734..
Albanese, K. R.; Okayama, Y.; Morris, P. T.; Gerst, M.; Gupta, R.; Speros, J. C.; Hawker, C. J.; Choi, C.; de Alaniz, J. R.; Bates, C. M. Building tunable degradation into high-performance poly(acrylate) pressure-sensitive adhesives. ACS Macro Lett. 2023 , 12 , 787−793..
Abu Bakar, R.; Keddie, J. L.; Roth, P. J. New chemistries for degradable pressure-sensitive adhesive networks. ChemPlusChem 2024 , 89 , e202400034..
Calderón-Díaz, A.; Boggiano, A. C.; Xiong, W.; Kaiser, N.; Gutekunst, W. R. Degradable N -vinyl copolymers through radical ring-opening polymerization of cyclic thionocarbamates. ACS Macro Lett . 2024 , 1390-1395..
Watanabe, H.; Kamigaito, M. Direct radical copolymerizations of thioamides to generate vinyl polymers with degradable thioether bonds in the backbones. J. Am. Chem. Soc. 2023 , 145 , 10948−10953..
Ivanchenko, O.; Destarac, M. 1,1’-Thiocarbonyldiimidazole radical copolymerization for the preparation of degradable vinyl polymers. ACS Macro Lett . 2024 , 13 , 47−51..
Oh, X. Y.; Ge, Y.; Goto, A. Synthesis of degradable and chemically recyclable polymers using 4,4-disubstituted five-membered cyclic ketene hemiacetal ester (CKHE) monomers. Chem. Sci. 2021 , 12 , 13546−13556..
Kazama, A.; Kohsaka, Y. Radical polymerization of ‘dehydroaspirin’ with the formation of a hemiacetal ester skeleton: a hint for recyclable vinyl polymers. Polym. Chem. 2019 , 10 , 2764−2768..
Chiba, Y.; Kawatani, R.; Kohsaka, Y. Chemically recyclable vinyl polymers by free radical polymerization of cyclic styrene derivatives. ACS Macro Lett. 2023 , 12 , 1672−1676..
Liu, P.; Jimaja, S.; Immel, S.; Thomas, C.; Mayer, M.; Weder, C.; Bruns, N. Mechanically triggered on demand degradation of polymers synthes ized by radical polymerizations. Nat. Chem. 2024 , 16 , 1184−1192..
Li, Z.; Zhang, X.; Zhao, Y.; Tang, S. Mechanochemical backbone editing for controlled degradation of vinyl polymers. Angew. Chem. Int. Ed. 2024 , 63 , e202408225..
Kuroda, K.;Ouchi, M. Umpolung isomerization in radical copolymerization of benzyl vinyl ether with pentafluorophenylacrylate leading to degradable aab periodic copolymers. Angew. Chem. Int. Ed. 2024 , 63 , e202316875..
Uchiyama, M.; Imai, M.; Kamigaito, M. Synthesis of degradable polymers via 1,5-shift radical isomerization polymerization of vinyl ether derivatives with a cleavable bond. Polym. J. 2024 , 56 , 359−368..
Chen, Y.; Yue, C.; An, B.; Liu, S.; Zhou, L.; Ji, C. L.; Li, Y. Six atom elongated radical polymerization enabled by 1,5-hydrogen atom transfer. Macromolecules 2024 , 57 , 4918−4925..
Zheng, K.; Yang, J.; Luo, X.; Xia, Y. High molecular weight semicrystalline substituted polycyclohexene from alternating copolymerization o f butadiene and methacrylate and its ambient depolymerization. J. Am. Chem. Soc. 2024 , 146 , 25321−25327..
Korpusik, A. B.; Adili, A.; Bhatt, K.; Anatot, J. E.; Seidel, D.; Sumerlin, B. S. Degradation of polyacrylates by one-pot sequential dehydrodecarboxylation and ozonolysis. J. Am. Chem. Soc. 2023 , 145 , 10480−10485..
Čamdžić, L.; Stache, E. E. Controlled radical polymerization of acrylates and isocyanides installs degradable functionality into novel copolymers. J. Am. Chem. Soc. 2023 , 145 , 20311−20318..
Sultane, P. R.; Bielawski, C. W. Stereoelectronically directed photodegradation of poly(adamantyl vinyl ketone). Macromol. Rapid Commun. 2019 , 40 , 1900302..
Kimura, T.; Kuroda, K.; Kubota, H.; Ouchi, M. Metal-catalyzed switching degradation of vinyl polymers via introduction of an “in-chain” carbon-halogen bond as the trigger. ACS Macro Lett. 2021 , 10 , 1535−1539..
Arslan, Z.; Kiliclar, H. C.; Yagci, Y. Visible light induced degradation of poly(met hyl methacrylate- co -methyl α -chloro acrylate) copolymer at ambient temperature. Macromol. Rapid Commun. 2023 , 44 , 2300066..
Yamamoto, S.; Kubo, T.; Satoh, K. Interlocking degradation of vinyl polymers via main-chain C―C bonds scission by introducing pendant-responsive comonomers. J. Polym. Sci. 2022 , 60 , 3435−3446..
Makino, H.; Nishikawa, T.; Ouchi, M. Polymer degradation by synergistic dual stimuli: base interaction and photocatalysis to unlock a boron pendant trigger for main-chain scission. Macromolecules 2023 , 56 , 8776−8783..
Langer, D. L.; Oh, S.; Stache, E. E. Selective poly(vinyl ether) upcycling via photooxidative degradation with visible light. Chem. Sci. 2024 , 15 , 1840−1845..
Kimura, T.; Ouchi, M. Photocatalyzed hydrogen atom transfer degradation of vinyl polymers: cleavage of a backbone C−C bond triggered by radical activation of a C−H bond in a pendant. Angew. Chem. Int. Ed. 2023 , 62 , e202305252..
Garrison, J. B.; Hughes, R. W.; Sumerlin, B. S. Backbone degradation of polymethacrylates via metal-free ambient-temperature photoinduced single-electron transfer. ACS Macro Lett. 2022 , 11 , 441−446..
Adili, A.; Korpusik, A. B.; Seidel, D.; Sumerlin, B. S. Photocatalytic direct decarboxylation of carboxylic acids to derivatize or degrade polymers. Angew. Chem. Int. Ed. 2022 , 61 , e202209085..
Whitfield, R.; Jones, G. R.; Truong, N. P.; Manring, L. E.; Anastasaki, A. Solvent-free chemical recycling of polymethacrylates made by ATRP and RAFT polymerization: high-yielding depolymerization at low temperatures. Angew. Chem. Int. Ed. 2023 , 62 , e202309116..
Jung, E.; Cho, M.; Peterson, G. I.; Choi, T. L. Depolymerization of polymethacrylates with ball-mill grinding. Macromolecules 2024 , 57 , 3131−3137..
Chin, M. T.; Yang, T.; Quirion, K. P.; Lian, C.; Liu, P.; He, J.; Diao, T. Implementing a doping approach for poly(methyl methacrylate) recycling in a circular economy. J. Am. Chem. Soc. 2024 , 146 , 5786−5792..
Hughes, R. W.; Lott, M. E.; Zastrow, I. S.; Young, J. B.; Maity, T.; Sumerlin, B. S. Bulk depolymerization of methacrylate polymers via pendent group activation. J. Am. Chem. Soc. 2024 , 146 , 6217−6224..
Kugelmass, L. H.; Tagnon, C.; Stache, E. E. Photothermal mediated chemical recycling to monomers via carbon quantum dots. J. Am. Chem. Soc. 2023 , 145 , 16090−16097..
Young, J. B.; Goodrich, S. L.; Lovely, J. A.; Ross, M. E.; Bowman, J. I.; Hughes, R. W.; Sumerlin, B. S. Mechanochemically promoted functionalization of postconsumer poly(methyl methacrylate) and poly( α -methylstyrene) for bulk depolymerization. Angew. Chem. Int. Ed. 2024 , 63 , e202408592..
Sano, Y.; Konishi, T.; Sawamoto, M.; Ouchi, M. Controlled radical depolymerization of chlorine-capped PMMA via reversible activation of the terminal group by ruthenium catalyst. Eur. Polym. J. 2019 , 120 , 109181..
Martinez, M. R.; De Luca Bossa, F.; Olszewski, M.; Matyjaszewski, K. Copper(II) chloride/tris(2-pyridylmethyl)amine-catalyzed depolymerization of poly( n -butyl methacrylate). Macromolecules 2022 , 55 , 78−87..
Martinez, M. R.; Schild, D.; De Luca Bossa, F.; Matyjaszewski, K. Depolymerization of polymethacrylates by iron ATRP. Macromolecules 2022 , 55 , 10590−10599..
Martinez, M. R.; Dadashi-Silab, S.; Lorandi, F.; Zhao, Y.; Matyjaszewski, K. Depolymerization of P(PDMS11MA) bottlebrushes via atom transfer radical polymerization with activator regeneration. Macromolecules 2021 , 54 , 5526−5538..
Mountaki, S. A.; Whitfield, R.; Liarou, E.; Truong, N. P.; Anastasaki, A. Open-air chemical recycling: fully oxygen-tolerant ATRP depolymerization. J. Am. Chem. Soc. 2024 , 146 , 18848−18854..
Parkatzidis, K.; Truong, N. P.; Matyjaszewski, K.; Anastasaki, A. Photocatalytic ATRP depolymerization: temporal control at low ppm of catalyst concentration. J. Am. Chem. Soc. 2023 , 145 , 21146−21151..
Young, J. B.; Bowman, J. I.; Eades, C. B.; Wong, A. J.; Sumerlin, B. S. Photoassisted radical depolymerization. ACS Macro Lett. 2022 , 11 , 1390−1395..
Bellotti, V.; Parkatzidis, K.; Wang, H. S.; De Alwis Watuthanthrige, N.; Orfano, M.; Monguzzi, A.; Truong, N. P.; Simonutti, R.; Anastasaki, A. Light-accelerated depolymerization catalyzed by Eosin Y. Polym. Chem. 2023 , 14 , 253−258..
Young, J. B.; Hughes, R. W.; Tamura, A. M.; Bailey, L. S.; Stewart, K. A.; Sumerlin, B. S. Bulk depolymerization of poly(methyl methacrylate) via chain-end initiation for catalyst-free reversion to monomer. Chem 2023 , 9 , 2669−2682..
De Alwis Watuthanthrige, N.; Whitfield, R.; Harrisson, S.; Truong, N. P.; Anastasaki, A. Thermal solution depolymerization of RAFT telechelic polymers. ACS Macro Lett. 2024 , 13 , 806−811..
Lohmann, V.; Jones, G. R.; Truong, N. P.; Anastasaki, A. The thermodynamics and kinetics of depolymerization: what makes vinyl monomer regeneration feasible. Chem. Sci. 2024 , 15 , 832−853..
Ma, Y.; Zhao, Y. N.; Yang, X. M.; Li, J. F.; Wang, X. Y.; Tang, Y. SaBOX/copper-catalyzed s ynthesis, degradation, and upcycling of a PMMA-based copolymer. Macromolecules 2023 , 56 , 7032−7042..
0
浏览量
24
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构