FOLLOWUS
a.Key Laboratory of Polymer Ecomaterials, Chinese Academy of Sciences, Changchun Institute of Applied Chemistry, Changchun 130022, China
b.College of Material and Engineering, School of Chemical Engineering, Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
c.Shandong Fufeng Fermentation Co., Ltd., Jinan 276600, China
d.National Engineering Research Center of Corn Deep Processing, Jilin COFCO Biochemistry Co., Ltd., Changchun 130033, China
hwpan@ciac.ac.cn (H.W.P.)
liuzhig@cofco.com (Z.G.L.)
纸质出版日期:2025-02-01,
网络出版日期:2025-01-18,
收稿日期:2024-08-19,
修回日期:2024-11-07,
录用日期:2024-11-20
Scan QR Code
The Stereocomplex Crystallites Improve the Stability of Biodegradable Poly(L-lactic acid)/Poly(D-lactic acid) Melt-Blown Nonwovens[J]. 高分子科学(英文), 2025,43(2):368-379.
JIN-SHUO YU, YUE-WEI HUAN, HONG-WEI PAN, et al. The Stereocomplex Crystallites Improve the Stability of Biodegradable Poly(L-lactic acid)/Poly(D-lactic acid) Melt-Blown Nonwovens. [J]. Chinese journal of polymer science, 2025, 43(2): 368-379.
The Stereocomplex Crystallites Improve the Stability of Biodegradable Poly(L-lactic acid)/Poly(D-lactic acid) Melt-Blown Nonwovens[J]. 高分子科学(英文), 2025,43(2):368-379. DOI: 10.1007/s10118-025-3272-3.
JIN-SHUO YU, YUE-WEI HUAN, HONG-WEI PAN, et al. The Stereocomplex Crystallites Improve the Stability of Biodegradable Poly(L-lactic acid)/Poly(D-lactic acid) Melt-Blown Nonwovens. [J]. Chinese journal of polymer science, 2025, 43(2): 368-379. DOI: 10.1007/s10118-025-3272-3.
In this experiment
the performance of PLLA/PDLA melt-blown nonwovens was improved by SC crystallites. The thermal stability and water contact angle were enhanced. The SC crystallites were more resistant to degradation by proteinase K compared to neat PLLA.
Poly(lactic acid) (PLA) is a biodegradable and eco-friendly polymer that is increasingly being incorporated into various applications in contemporary society. However
the limited stability of PLA-based products remains a significant challenge for their broader use in various applications. In this study
poly(L-lactic acid)(PLLA)/poly(D-lactic acid) (PDLA) melt-blown nonwovens were prepared by melt spinning. The structure
thermal properties
thermal stability
biodegradability and crystalline morphology of the melt-blown nonwovens were investigated. DSC and WAXD confirmed the formation o
f stereocomplex (SC) crystallites in the PLLA matrix. The storage modulus (
G
')
loss modulus (
G
'')
and complex viscosity (|
η
*|) of the PLLA/PDLA blend increased with an increase in SC crystallite content. The thermal degradation temperatures of PLLA/PDLA melt-blown nonwovens increased with the incorporation of SC crystallites
and the maximum rate of decomposition increased to 385.5 °C
thus enhancing the thermal stability. Compared with neat PLLA melt-blown nonwovens
the hydrophobicity of PLLA/PDLA melt-blown nonwovens was improved
and WCA increased to 139.7°. The SC crystallites were more resistant to degradation by proteinase K compared to neat PLLA. However
the degradation rate of PLLA/PDLA melt-blown nonwovens remained at a high level. This work provides an effective strategy to obtain high-performance PLLA melt-blown nonwovens.
PLLAPDLAMelt-blown nonwovensStereocomplex crystallitesThermal stabilityEnzymatic degradation
Gao, H.; Liu, G.; Guan, J.; Wang, X.; Yu, J.; Ding, B. Biodegradable hydro-charging polylactic acid melt-blown nonwovens with efficient PM0.3 removal.Chem. Eng. J 2023 ,458..
Tang, M.; Jiang, L.; Wang, C.; Li, X.; He, X.; Li, Y.; Liu, C.; Wang, Y.; Gao, J.; Xu, H. Bioelectrets in electrospun bimodal poly(lactic acid) fibers: realization of multiple mechanisms for efficient and long-term filtration of fine PMs.ACS. App. Mater. Inter2023,15, 25919−25931..
Lin, Q.; Feng, J.; Zhao, L. A new modified method to obtain a high melt index of PLA polymer and preparation of melt-blown nonwoven cloth.Fiber. Polym.2023,24, 3405−3419..
Mann, G. S.; Singh, L. P.; Kumar, P.; Singh, S. Green composites: A review of processing technologies and recent applications.J. Thermoplast. Compos.2018,33, 1145−1171..
Ren, Q.; Wu, M. H.; Wang, L.; Zheng, W. G.; Hikima, Y.; Semba, T.; Ohshima, M. Cellulose nanofiber reinforced poly (lactic acid) with enhanced rheology, crystallization and foaming ability.Carbohyd. Polym.2022,286, 119320..
Avci, A.; Eker, A. A.; Bodur, M. S.; Candan, Z. Water absorption characterization of boron compounds-reinforced PLA/flax fiber sustainable composite.Int. J. Biol. Macromol.2023,233, 123546..
Pan, G.; Xu, H.; Ma, B.; Wizi, J.; Yang, Y. Polylactide fibers with enhanced hydrolytic and thermal stabilityviacomplete stereo-complexation of poly(l-lactide) with high molecular weight of 600000 and lower-molecular-weight poly(d-lactide).J. Mater. Sci.2018,53, 5490−5500..
Castro-Aguirre, E.; Iñiguez-Franco, F.; Samsudin, H.; Fang, X.; Auras, R. Poly(lactic acid)—mass production, processing, industrial applications, and end of life.Adv. Drug. Deliver. Rev.2016,107, 333−366..
Weng, Y.; Dunn, C. B.; Qiang, Z.; Ren, J. Immobilization of protease K with ZIF-8 for enhanced stability in polylactic acid melt processing and catalytic degradation.ACS. App. Mater. Interfaces2023,15, 56957−56969..
Liu, Q.; Zhou, Y.; Shen, Y.; Li, Y.; Guo, H.; Deng, B.; Li, Y. Morphology, structure, and properties of conductive polylactide fibers prepared using polyvinyl acetate and multiwalled carbon nanotubes.Coatings 2019 ,9..
Zhuang, X.; Yang, X.; Shi, L.; Cheng, B.; Guan, K.; Kang, W. Solution blowing of submicron-scale cellulose fibers.Carbohyd. Polym.2012,90, 982−987..
Solarski, S.; Mahjoubi, F.; Ferreira, M.; Devaux, E.; Bachelet, P.; Bourbigot, S.; Delobel, R.; Coszach, P.; Murariu, M.; Da silva Ferreira, A.; Alexandre, M.; Degee, P.; Dubois, P. (Plasticized) Polylactide/clay nanocomposite textile: thermal, mechanical, shrinkage and fire properties.J. Mater. Sci.2007,42, 5105−5117..
Boonyod, S.; Pivsa-Art, W.; Nanthananon, P.; Kwon, Y. K.; Pivsa-Art, S. Antibacterial property and biodegradation of PLA/PBS nonwoven fabric coated with mangosteen pericarp extract.J. Polym. Environ.2023,31, 3070−3080..
Li, H.; Zhang, H.; Hu, J. J.; Wang, G. F.; Cui, J. Q.; Zhang, Y. F.; Zhen, Q. Facile preparation of hydrophobic PLA/PBE micro-nanofiber fabricsviathe melt-blown process for high-efficacy oil/water separation.Polymers2022,14..
Sun, H. W.; Zhang, H.; Zhen, Q.; Wang, S.-F.; Hu, J. J.; Cui, J. Q.; Qian, X. M. Large-scale preparation of polylactic acid/polyethylene glycol micro/nanofiber fabrics with aligned fibers via a post-drafting melt blown process.J. Polym. Res. 2022 ,29..
He, S.; Bai, H.; Bai, D.; Ju, Y.; Zhang, Q.; Fu, Q. A promising strategy for fabricating high-performance stereocomplex-type polylactide products via carbon nanotubes-assisted low-temperature sintering.Polymer2019,162, 50−57..
Shi, Z. Z.; Fan, Z. Y.; Ma, L.; Gong, P. J.; Bao, R. Y.; Yang, M. B.; Yang, W. Simultaneously enhanced stereocomplexation and melt strength by dynamic polylactide toward heat-resistant green foams.Macromolecules.2023,56, 8735−8746..
Ikkada;, Y.; Jamshidi;, K.; Tsuji, H.; Hyon, S. H. Stereocomplex formation between enantiomeric poly(lactides).Macromolecules1987,20, 904−906..
Luo, F.; Fortenberry, A.; Ren, J.; Qiang, Z. Recent progress in enhancing poly(lactic acid) stereocomplex formation for material property improvement.Front. Chem.2020,8, 688..
Liu, H.; Bai, D.; Bai, H.; Zhang, Q.; Fu, Q. Constructing stereocomplex structures at the interface for remarkably accelerating matrix crystallization and enhancing the mechanical properties of poly(l-lactide)/multi-walled carbon nanotube nanocomposites.J. Mater. Chem. A.2015,3, 13835−13847..
Tan, B. H.; Muiruri, J. K.; Li, Z.; He, C. Recent progress in using stereocomplexation for enhancement of thermal and mechanical property of polylactide.ACS Sustainable Chem. Eng.2016,4, 5370−5391..
Kara, Y.; Molnar, K. Decomposition behavior of stereocomplex PLA melt-blown fine fiber mats in water and in compost.J. Polym. Environ.2023,31, 1398−1414..
Zhang, H.; Bai, H.; Deng, S.; Liu, Z.; Zhang, Q.; Fu, Q. Achieving all-polylactide fibers with significantly enhanced heat resistance and tensile strengthvia in situformation of nanofibrilized stereocomplex polylactide.Polymer2019,166, 13−20..
Fan, T.; Qin, J.; Dong, F.; Meng, X.; Li, Y.; Wang, Y.; Liu, Q.; Wang, G. Effects on the crystallization behavior and biocompatibility of poly(LLA-ran-PDO-ran-GA) with poly(d-lactide) as nucleating agents.RSC Adv.2022,12, 10711−10724..
Jia, S.; Chen, Y.; Bian, J.; Pan, H.; Wang, X.; Zhao, L.; Han, L.; Zhang, H.; Dong, L.; Zhang, H. Preparation and properties of poly(L-lactic acid) blends with excellent low-temperature toughness by blending acrylic ester based impact resistance agent.Int. J. Biol. Macromol.2021,183, 1871−1880..
Yoon, J. T.; Jeong, Y. G.; Lee, S. C.; Min, B. G. Influences of poly(lactic acid)-grafted carbon nanotube on thermal, mechanical, and electrical properties of poly(lactic acid).Polym. Adv. Technol.2009,20, 631−638..
Yu, B.; Cao, Y.; Sun, H.; Han, J. The structure and properties of biodegradable PLLA/PDLA for melt-blown nonwovens.J. Polym. Environ.2016,25, 510−517..
Chen, W.; Zhong, C.; Li, S.; Wen, D.; Zhou, D.; Shao, J.; Chen, S.; Hou, H.; Xiang, S. The crystallization behavior of poly(d-lactic acid)/poly(l-lactic acid) asymmetric blends: effect of morphology of stereocomplex crystals on the formation of homochiral crystals.J. Polym. Environ.2023,32, 536−547..
Zhu, F.; Su, J.; Zhao, Y.; Hussain, M.; Yasin, S.; Yu, B.; Han, J. Influence of halloysite nanotubes on poly(lactic acid) melt-blown nonwovens compatibilized by dual-monomer melt-grafted poly(lactic acid).Tex. Res. J.2019,89, 4173−4185..
Pan, H.; Li, Z.; Yang, J.; Li, X.; Ai, X.; Hao, Y.; Zhang, H.; Dong, L. The effect of MDI on the structure and mechanical properties of poly(lactic acid) and poly(butylene adipate-co-butylene terephthalate) blends.RSC. Adv.2018,8, 4610−4623..
Chen, Y.; Han, L.; Ju, D.;Liu, T.; Dong, L. Disentanglement induced by uniaxial pre-stretching as a key factor for toughening poly( -lactic acid) sheets.Polymer2018,140, 47−55..
Kawai,T.; Rahman, N.; Matsuba, G.; Nishida, K.; Kanaya, T.; Nakano, M.; Okamoto, H.; Kawada, J.; Usuki, A.; Honma, N.; Nakajima, K.; Matsuda, M. Crystallization and melting behavior of poly(l-lactic acid).Macromolecules2007,40, 9463−9469..
Wei, X. F.; Bao, R. Y.; Cao, Z. Q.; Yang, W.; Xie, B. H.; Yang, M. B. Stereocomplex crystallite network in asymmetric PLLA/PDLA blends: formation, structure, and confining effect on the crystallization rate of homocrystallites.Macromolecules2014,47, 1439−1448..
Yan, C.; Hou, D. F.; Zhang, K.; Yang, M. B. Effects of PDLA molecular weight on the crystallization behaviors and rheological properties of asymmetric PDLA/PLLA blends.Polymer2023,270, 125764..
Yamane, H.; Sasai, K.; Takano, M.; Takahashi, M. Poly(D-lactic acid) as a rheological modifier of poly(L-lactic acid): shear and biaxial extensional flow behavior.J. Rheol.2004,48, 599−609..
Zhu, F.; Su, J.; Wang, M.; Hussain, M.; Yu, B.; Han, J. Study on dual-monomer melt-grafted poly(lactic acid) compatibilized poly(lactic acid)/polyamide 11 blends and toughened melt-blown nonwovens.J. Ind. Tex.2018,49, 748−772..
Tan, D. H.; Zhou, C.; Ellison, C. J.; Kumar, S.; Macosko, C. W.; Bates, F. S. Meltblown fibers: influence of viscosity and elasticity on diameter distribution.J. Non-Newton. Fluid. Mech.2010,165, 892−900..
Chen, D.; Li, J.; Ren, J. Crystal and thermal properties of PLLA/PDLA blends synthesized by direct melt polycondensation.J. Polym. Environ.2011,19, 574−581..
Feng, L.; Bian, X.; Li, G.; Chen, X. Thermal properties and structural evolution of poly(l-lactide)/poly(d-lactide) blends.Macromolecules2021,54, 10163−10176..
Tokiwa, Y.; Calabia, B. P. Biodegradability and biodegradation of poly(lactide).Appl. Microbiol. Biotechnol.2006,72, 244−251..
Eleuteri, M.; Pastorino, L.; Monticelli, O. On the degradation properties of electrospun fibers based on PLLA: the effect of a drug model modification.Polym. Degrad. Stabil.2018,153, 109−117..
Yin, C.; Hemstedt, J.; Scheuer, K.; Struczynska, M.; Weber, C.; Schubert, U. S.; Bossert, J.; Jandt, K. D. The effect of stereocomplexation and crystallinity on the degradation of polylactide nanoparticles.Nanomaterials.2024,14..
Kawai, F.; Nakadai, K.; Nishioka, E.; Nakajima, H.; Ohara, H.; Masaki, K.; Iefuji, H. Different enantioselectivity of two types of poly(lactic acid) depolymerase toward poly(l-lactic acid) and poly(d-lactic acid).Polym. Degrad. Stabil.2011,96, 1342−1348..
Reeve, M. S.; McCarthy, S. P.; Downey, M. J.; Gros, R. A. Polylactide stereochemistry: effect on enzymic degradability.Macromolecules.1994,27, 825−831..
Suming Li; Mathieu Tenon; Henri Garreau; Christian Braud; Vert, M. Enzymatic degradation of stereocopolymers derived from l-, dl- and meso-lactides.Polym. Degrad. Stabil.2000,67, 85−90..
Wang, X. Y.; Pan, H. W.; Jia, S. L.; Cao, Z. W.; Han, L. J.; Zhang, H. L.; Dong, L. S. Mechanical properties, crystallization and biodegradation behavior of the polylactide/poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/poly(butylene adipate-co-terephthalate) blown films.Chinese J. Polym. Sci.2020,38, 1072−1081..
Makowski, T.; Svyntkivska, M.; Piorkowska, E.; Kregiel, D. Multifunctional polylactide nonwovens with 3D network of multiwall carbon nanotubes.Appl. Surf. Sci.2020,527, 146898..
Liu, K.; Cao, H.; Yuan, W.; Bao, Y.; Shan, G.; Wu, Z.; Pan, P. Stereocomplexed and homocrystalline thermo-responsive physical hydrogels with a tunable network structure and thermo-responsiveness.J. Mater. Chem. B2020,8, 7947−7955..
Mao, H.; Wang, C.; Chang, X.; Cao, H.; Shan, G.; Bao, Y.; Pan, P. Poly(lactic acid)/poly(ethylene glycol) stereocomplexed physical hydrogels showing thermally-induced gel-sol-gel multiple phase transitions.Mater. Chem. Front.2018,2, 313−322..
Gao, A.; Zhao, Y.; Yang, Q.; Fu, Y.; Xue, L. Facile preparation of patterned petal-like PLA surfaces with tunable water micro-droplet adhesion properties based on stereo-complex co-crystallization from non-solvent induced phase separation processes.J. Mater. Chem. A.2016,4, 12058−12064..
Kanno, T.; Uyama, H. Unique Transitions in Morphology andCharacteristics of Porous Poly(Lactic Acid) Enantiomers.Macromol. Chem. Phys. 2018 ,219..
Zhu, C.; Jiang, W.; Hu, J.; Sun, P.; Li, A.; Zhang, Q. Polylactic acid nonwoven fabric surface modified with stereocomplex crystals for recyclable use in oil/water separation.ACS Appl. Polym. Mater.2020,2, 2509−2516..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构