
FOLLOWUS
a.Key Laboratory of High-Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
b.Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry Department, Nanjing 210018, China
c.School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
d.Executive in Low Carbon Management Division of QHSE Department, Sinochem Holdings Corporation Ltd, Central Tower, Chemsunny World Trade Center, Beijing 100031, China
e.State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
chemzqh@nju.edu.cn (Q.H.Z.)
jiaxd@nju.edu.cn (X.D.J.)
收稿日期:2024-08-01,
修回日期:2024-10-23,
录用日期:2024-10-28,
网络出版日期:2024-12-25,
纸质出版日期:2025-01-01
Scan QR Code
Wu, H. M.; Ma, W. C.; Cai, Y. F.; Huang, X.; Li, J. H.; Kai, X.; Zhang, Q. H.; Jia, X. D. Boroxine crystalline covalent organic frameworks based single-ion quasi-solid-state conductor in lithium-ion battery. Chinese J. Polym. Sci. 2025, 43, 177–187
Hao-Min Wu, Wen-Can Ma, Yi-Feng Cai, et al. Boroxine Crystalline Covalent Organic Frameworks Based Single-ion Quasi-solid-state Conductor in Lithium-ion Battery[J]. Chinese journal of polymer science, 2025, 43(1): 177-187.
Wu, H. M.; Ma, W. C.; Cai, Y. F.; Huang, X.; Li, J. H.; Kai, X.; Zhang, Q. H.; Jia, X. D. Boroxine crystalline covalent organic frameworks based single-ion quasi-solid-state conductor in lithium-ion battery. Chinese J. Polym. Sci. 2025, 43, 177–187 DOI: 10.1007/s10118-025-3260-7.
Hao-Min Wu, Wen-Can Ma, Yi-Feng Cai, et al. Boroxine Crystalline Covalent Organic Frameworks Based Single-ion Quasi-solid-state Conductor in Lithium-ion Battery[J]. Chinese journal of polymer science, 2025, 43(1): 177-187. DOI: 10.1007/s10118-025-3260-7.
We first proposed and prepared a series of SIQSSEs based on the boroxine COF-5. Both COF-N-S-TFSILi and COF-N-S-SPSILi possessed high lithium transference numbers (LTNs) and high ionic conductivities at room temperature simultaneously. The SIQSSE COF-N-S-TFSILi also achieved an ideal battery performance.
Solid-state electrolytes are considered to be the vital part of the next-generation solid-state batteries (SSBs)
due to their high safety and long operation life span. However
the two major factors that impede the expected performance of batteries are: the easy formation of lithium dendrites due to the concentration gradient of anions
and the low ionic conductivity at room temperature
which prevents reaching ideal electrochemical performance. Single-ion quasi-solid-state electroly
tes (SIQSSEs) could provide higher safety and energy density
owing to absence of anion concentration gradient and solvent
as well as good lithium-ion transport ability. The porous covalent organic frameworks (COFs) are beneficial for con-structing appropriate lithium-ion transport pathway
due to the ordered 1D channel. In addition
the boroxine COFs (COF-5) offers strong ability of withdrawing anion part of lithium salt. Last but not the least
boron atom could play the role of coordinate site due to its electron deficiency. These advantages afford an opportunity to obtain a SIQSSE with high ionic conductivity and high lithium transference number (LTN) simultaneously. The COF-5 based SIQSSEs delivered a high ionic conductivity of 6.3×10
−4
S·cm
−1
with a high LTN of 0.92 and a wide electrochemical stable window (ESW) of 4.7 V at room temperature. The LiFePO
4
(LFP)/Li cells
which was assembled with COF-5 based SIQSSE
exhibited outstanding long cycle stability
high initial capacity and favorable rate performance. The results indicated COFs could be an ideal material for single-ion solid-state electrolytes in next-generation batteries.
Li, J.; Cai, Y.; Wu, H.; Yu, Z.; Yan, X.; Zhang, Q.; Gao, T. Z.; Liu, K.; Jia, X.; Bao, Z. Polymers in lithium-ion and lithium metal batteries. Adv. Energy Mater. 2021 , 11 , 2003239..
Janek, J.; Zeier, W. G. A solid future for battery development. Nat. Energy 2016 , 1 , 141..
Xu, K. Li-ion battery electrolytes. Nat. Energy 2021 , 6 , 763−763..
Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014 , 114 , 11636−82..
Kwon, T. W.; Choi, J. W.; Coskun, A. The emerging era of supramolecular polymeric binders in silicon anodes. Chem. Soc. Rev. 2018 , 47 , 2145−2164..
Cheng, X. B.; Zhao, C. Z.; Yao, Y. X.; Liu, H.; Zhang, Q. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes. Chem 2019 , 5 , 74−96..
Gao, Y.; Pan, Z.; Sun, J.; Liu, Z.; Wang, J. High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 2022 , 14 , 94..
Galos, J.; Pattarakunnan, K.; Best, A. S.; Kyratzis, I. L.; Wang, C. H.; Mouritz, A. P. Energy storage structural composites with integrated lithium-ion batteries: a review. Adv. Mater. Technol. 2021 , 6 , 2001059.
Zhou, Q.; Ma, J.; Dong, S.; Li, X.; Cui, G. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater 2019 , 31 , e1902029..
Liu, J.; Bao, Z.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q.; Liaw, B. Y.; Liu, P.; Manthiram, A.; Meng, Y. S.; Subramanian, V. R.; Toney, M. F.; Viswanathan, V. V.; Whittingham, M. S.; Xiao, J.; Xu, W.; Yang, J.; Yang, X. Q.; Zhang, J. G. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 2019 , 4 , 180−186..
Cao, Y.; Li, M.; Lu, J.; Liu, J.; Amine, K. Bridging the academic and industrial metrics for next-generation practical batteries. Nat. Nanotechnol. 2019 , 14 , 200−207..
Itoh, T.; Mitsuda, Y.; Ebina, T.; Uno, T.; Kubo, M. Solid polymer electrolytes composed of polyanionic lithium salts and polyethers. J. Power Sources 2009 , 189 , 531−535..
Cheng, X. B.; Zhang, Q. Dendrite-free lithium metal anodes: stable solid electrolyte interphases for high-efficiency batteries. J. Mater. Chem. A 2015 , 3 , 7207−7209..
Ahmed, F.; Choi, I.; Rahman, M. M.; Jang, H.; Ryu, T.; Yoon, S.; Jin, L.; Jin, Y.; Kim, W. Remarkable conductivity of a self-healing single-ion conducting polymer electrolyte, poly(ethylene- co -acrylic lithium (fluoro sulfonyl)imide), for all-solid-state Li-ion batteries. ACS Appl. Mater. Interfaces 2019 , 11 , 34930−34938..
Borzutzki, K.; Thienenkamp, J.; Diehl, M.; Winter, M.; Brunklaus, G. Fluorinated polysulfonamide based single ion conducting room temperature applicable gel-type polymer electrolytes for lithium ion batteries. J. Mater. Chem. A 2019 , 7 , 188−201..
Chen, Y.; Ke, H.; Zeng, D.; Zhang, Y.; Sun, Y.; Cheng, H. Superior polymer backbone with poly(arylene ether) over polyamide for single ion conducting polymer electrolytes. J. Membr. Sci. 2017 , 525 , 349−358..
Thomas, K. E.; Sloop, S. E.; Kerr, J. B.; Newman, J. Comparison of lithium-polymer cell performance with unity and nonunity transference numbers. J. Power Sources 2000 , 89 , 132−138..
Hallinan, D. T.; Balsara, N. P. Polymer electrolytes. Annu. Rev. Mater. Res. 2013 , 43 , 503−525..
Ji, P. Y.; Fang, J.; Zhang, Y. Y.; Zhang, P.; Zhao, J. B. Novel single lithium-ion conducting polymer electrolyte based on poly(hexafluorobutyl methacrylate- co -lithium allyl sulfonate) for lithium-ion batteries. ChemElectroChem 2017 , 4 , 2352−2358..
Jeong, K.; Park, S.; Jung, G. Y.; Kim, S. H.; Lee, Y. H.; Kwak, S. K.; Lee, S. Y. Solvent-free, single lithium-ion conducting covalent organic frameworks. J. Am. Chem. Soc. 2019 , 141 , 5880−5885..
Guo, M.; Zhang, M.; He, D.; Hu, J.; Wang, X.; Gong, C.; Xie, X.; Xue, Z. Comb-like solid polymer electrolyte based on polyethylene glycol-grafted sulfonated polyether ether ketone. Electrochim. Acta 2017 , 255 , 396−404..
Ding, C.; Fu, X.; Li, H.; Yang, J.; Lan, J. L.; Yu, Y.; Zhong, W. H.; Yang, X. An ultrarobust composite gel electrolyte stabilizing ion deposition for long-life lithium metal batteries. Adv. Funct. Mater. 2019 , 29 , 1904547..
Chen, Y.; Xu, G.; Liu, X.; Pan, Q.; Zhang, Y.; Zeng, D.; Sun, Y.; Ke, H.; Cheng, H. A gel single ion conducting polymer electrolyte enables durable and safe lithium ion batteries via graft polymerization. RSC Adv. 2018 , 8 , 39967−39975..
Wang, X.; Liu, Z.; Kong, Q.; Jiang, W.; Yao, J.; Zhang, C.; Cui, G. A single-ion gel polymer electrolyte based on polymeric lithium tartaric acid borate and its superior battery performance. Solid State Ionics 2014 , 262 , 747−753..
Hu, Y.; Dunlap, N.; Wan, S.; Lu, S.; Huang, S.; Sellin ger, I.; Ortiz, M.; Jin, Y.; Lee, S. H.; Zhang, W. Crystalline lithium imidazolate covalent organic frameworks with high Li-ion conductivity. J. Am. Chem. Soc. 2019 , 141 , 7518−7525..
Deng, K.; Wang, S.; Ren, S.; Han, D.; Xiao, M.; Meng, Y. A Novel single-ion-conducting polymer electrolyte derived from CO 2 -based multifunctional polycarbonate. ACS Appl. Mater. Interfaces 2016 , 8 , 33642−33648..
Lee, H. S.; Yang, X. Q.; Xiang, C. L.; McBreen, J.; Choi, L. S. The synthesis of a new family of boron-based anion receptors and the study of their effect on ion pair dissociation and conductivity of lithium salts in nonaqueous solutions. J. Electrochem. Soc. 1998 , 145 , 2813−2818..
Schaefer, J. L.; Yanga, D. A.; Archer, L. A. High lithium transference number electrolytes via creation of 3-dimensional, charged, nanoporous networks from dense functionalized nanoparticle composites. Chem. Mater. 2013 , 25 , 834−839..
Shim, J.; Kim, D. G.; Kim, H. J.; Lee, J. H.; Lee, J. C. Polymer composite electrolytes having core-shell silica fillers with anion-trapping boron moiety in the shell layer for all-solid-state lithium-ion batteries. ACS Appl. Mater. Interfaces 2015 , 7 , 7690−701..
Dong, D.; Zhang, H.; Zhou, B.; Sun, Y.; Zhang, H.; Cao, M.; Li, J.; Zhou, H.; Qian, H.; Lin, Z.; Chen, H. Porous covalent organic frameworks for high transference number polymer-based electrolytes. Chem. Commun. 2019 , 55 , 1458−1461..
Li, S.; Zuo, C.; Jo, Y. H.; Li, S.; Jiang, K.; Yu, L.; Zhang, Y.; Wang, J.; Li, L.; Xue, Z. Enhanced ionic conductivity and mechanical properties via dynamic-covalent boroxinebonds in solid polymer electrolytes. J. Membr. Sci. 2020 , 608 , 118218..
Mehta, M. A.; Fujinami, T.; Inoue, S.; Matsushita, K.; Miwa, T.; Inoue, T. The use of boroxine rings for the development of high performance polymer electrolytes. Electrochim. Acta 2000 , 45 , 1175−1180..
Zuo, H.; Lyu, B.; Yao, J.; Long, W.; Shi, Y.; Li, X.; Hu, H.; Thomas, A.; Yuan, J.; Hou, B.; Zhang, W.; Liao, Y. Bioinspired gradient covalent organic framework membranes for ultrafast and asymmetric solvent transport. Adv. Mater. 2024 , 36 , e2305755..
Wang, K.; Duan, J.; Chen, X.; Wang, J.; Li, J.; Jiang, L.; Yan, W.; Lyu, W.; Liao, Y. Nanofibrous covalent organic frameworks based hierarchical porous separators for fast-charging and thermally stable lithium metal batteries. Adv. Energy Mater. 2024 , 14 , 2401146..
Wu, D.; Xu, F.; Sun, B.; Fu, R.; He, H.; Matyjaszewski, K. Design and preparation of porous polymers. Chem. Rev. 2012 , 112 , 3959−4015..
Li, X.; Loh, K. P. Recent progress in covalent organic frameworks as solid-state ion conductors. ACS Mater. Lett. 2019 , 1 , 327−335..
Zhu, D.; Xu, G.; Barnes, M.; Li, Y.; Tseng, C. P.; Zhang, Z.; Zhang, J. J.; Zhu, Y.; Khalil, S.; Rahman, M. M.; Verduzco, R.; Ajayan, P. M. Covalent organic frameworks for batteries. Adv. Funct. Mater. 2021 , 31 , 2100505..
Zhi, Y.; Shao, P.; Feng, X.; Xia, H.; Zhang, Y.; Shi, Z.; Mu, Y.; Liu, X. Covalent organic frameworks: efficient, metal-free, heterogeneous organocatalysts for chemical fixation of CO 2 under mild conditions. J. Mater. Chem. A 2018 , 6 , 374−382..
Rodriguez-San-Miguel, D.; Zamora, F. Processing of covalent organic frameworks: an ingredient for a material to succeed. Chem. Soc. Rev. 2019 , 48 , 4375−4386..
Evans, J.; Vincent, C. A.; Bruce, P. G. Electrochemical measurement of transferencenumbers in polymer electrolytes. Polymer 1987 , 28 , 2324−2328..
Brunauer, S.; Emmett, P. H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 2002 , 60 , 309−319..
Cote, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005 , 310 , 1166−1170..
Reid, W. B.; West, A. R. Surface-roughness effects at lithium silicate glass blocking metal interfaces. Solid State Ionics 1991 , 45 , 239−244..
Ma, W.; Wu, H.; Cai, Y.; Yu, Z.; Wang, Y.; Zhang, J.-H.; Zhang, Q.; Jia, X. A Flexible single-ion gel electrolyte with a multiscale channel for the high-performance lithium metal batteries. ACS Mater. Lett. 2022 , 4 , 944−952..
Cai, Y.; Liu, C.; Yu, Z.; Wu, H.; Wang, Y.; Ma, W.; Zhang, Q.; Jia, X. A flexible and highly conductive quasi-solid single-ion polymer electrolyte for high performance Li-metal batteries. J. Power Sources 2022 , 537 , 231478..
Olmedo-Martínez, J. L.; Porcarelli, L.; Alegría, Á.; Mecerreyes, D.; Müller, A. J. High lithium conductivity of miscible poly(ethylene oxide)/methacrylic sulfonamide anionic polyelectrolyte polymer blends. Macromolecules 2020 , 53 , 4442−4453..
Zhang, Y.; Lim, C. A.; Cai, W.; Rohan, R.; Xu, G.; Sun, Y.; Cheng, H. Design and synthesis of a single ion conducting block copolymer electrolyte with multifunctionality for lithium ion batteries. RSC Adv. 2014 , 4 , 43857−43864..
Deng, K.; Qin, J.; Wang, S.; Ren, S.; Han, D.; Xiao, M.; Meng, Y. Effective suppression of lithium dendrite growth using a flexible single-ion conducting polymer electrolyte. Small 2018, e1801420..
Ding, S. Y.; Wang, W. Covalent organic frameworks (COFs): from d esign to applications. Chem. Soc. Rev. 2013 , 42 , 548−568..
Chen, H.; Tu, H.; Hu, C.; Liu, Y.; Dong, D.; Sun, Y.; Dai, Y.; Wang, S.; Qian, H.; Lin, Z.; Chen, L. Cationic covalent organic framework nanosheets for fast Li-ion conduction. J. Am. Chem. Soc. 2018 , 140 , 896−899..
Porcarelli, L.; Sutton, P.; Bocharova, V.; Aguirresarobe, R. H.; Zhu, H.; Goujon, N.; Leiza, J. R.; Sokolov, A.; Forsyth, M.; Mecerreyes, D. Single-ion conducting polymer nanoparticles as functional fillers for solid electrolytes in lithium metal batteries. ACS Appl. Mater. Interfaces 2021 , 13 , 54354−54362..
Wang, S.; Li, X.; Cheng, T.; Liu, Y.; Li, Q.; Bai, M.; Liu, X.; Geng, H.; Lai, W.-Y.; Huang, W. Highly conjugated three-dimensional covalent organic frameworks with enhanced Li-ion conductivity as solid-state electrolytes for high-performance lithium metal batteries. J. Mater. Chem. A 2022 , 10 , 8761−8771..
Wang, P.; Peng, Y.; Zhu, C.; Yao, R.; Song, H.; Kun, L.; Yang, W. Single-phase covalent organic framework staggered stacking nanosheet membrane for CO 2 -selective separation. Angew. Chem. Int. Ed. 2021 , 60 , 19047−19052..
Xu, B.; Li, X.; Yang, C.; Li, Y.; Grundish, N. S.; Chien, P. H.; Dong, K.; Manke, I.; Fang, R.; Wu, N.; Xu, H.; Dolocan, A.; Goodenough, J. B. Interfacial chemistry enables stable cycling of all-solid-state Li metal batteries at high current densities. J. Am. Chem. Soc. 2021 , 143 , 6542−6550..
Guo, D.; Shinde, D. B.; Shin, W.; Abou-Hamad, E.; Emwas, A. H.; Lai, Z.; Manthiram, A. Foldable solid-state batteries enabled by electrolyte mediation in covalent organic frameworks. Adv. Mater . 2022, 34 , e2201410..
0
浏览量
133
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621