FOLLOWUS
Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Daijinyue@nimte.ac.cn (J.Y.D.)
liuxq@nimte.ac.cn (X.Q.L.)
纸质出版日期:2025-01-01,
网络出版日期:2024-12-25,
收稿日期:2024-09-10,
修回日期:2024-10-01,
录用日期:2024-10-16
Scan QR Code
Yang, K. R.; Dai, J. Y.; Wang, S. P.; Zhao, W. W.; Liu, X. Q. Bio-based epoxy composites demonstrating high temperature breakdown strength and thermal conductivity for high voltage insulation. Chinese J. Polym. Sci. 2025, 43, 40–52
KE-RONG YANG, JIN-YUE DAI, SHUAI-PENG WANG, et al. Bio-based Epoxy Composites Demonstrating High Temperature Breakdown Strength and Thermal Conductivity for High Voltage Insulation. [J]. Chinese journal of polymer science, 2025, 43(1): 40-52.
Yang, K. R.; Dai, J. Y.; Wang, S. P.; Zhao, W. W.; Liu, X. Q. Bio-based epoxy composites demonstrating high temperature breakdown strength and thermal conductivity for high voltage insulation. Chinese J. Polym. Sci. 2025, 43, 40–52 DOI: 10.1007/s10118-025-3254-5.
KE-RONG YANG, JIN-YUE DAI, SHUAI-PENG WANG, et al. Bio-based Epoxy Composites Demonstrating High Temperature Breakdown Strength and Thermal Conductivity for High Voltage Insulation. [J]. Chinese journal of polymer science, 2025, 43(1): 40-52. DOI: 10.1007/s10118-025-3254-5.
Bio-based electrical epoxy resin with intrinsically high thermal conductivity
high breakdown strength and low dielectric loss promotes the green and environmental-friendly transformation of electric power equipment to achieve sustainable development.
The demand for energy-efficient and environmental-friendly power grid construction has made the exploitation of bio-based electrical epoxy resins with excellent properties increasingly important. This work developed the bio-based electrotechnical epoxy resins based on magnolol. High-performance epoxy resin (DGEMT) with a double crosslinked points and its composites (Al
2
O
3
/DGEMT) were obtained taking advantages of the two bifunctional groups (allyl and phenolic hydroxyl groups) of magnolol. Benefitting from the distinctive st
ructure of DGEMT
the Al
2
O
3
/DGEMT composites exhibited the advantages of intrinsically high thermal conductivity
high insulation
and low dielectric loss. The AC breakdown strength and thermal conductivity of Al
2
O
3
/DGEMT composites were 35.5 kV/mm and 1.19 W·m
−1
·K
−1
respectively
which were 15.6% and 52.6% higher than those of petroleum-based composites (Al
2
O
3
/DGEBA). And its dielectric loss tan
δ
=0.0046 was 20.7% lower than that of Al
2
O
3
/DGEBA. Furthermore
the mechanical
thermal and processing properties of Al
2
O
3
/DGEMT are fully comparable to those of Al
2
O
3
/DGEBA. This work confirms the feasibility of manufacturing environmentally friendly power equipment using bio-based epoxy resins
which has excellent engineering applications.
Bio-based epoxy compositesMagnololBreakdown strengthThermal conductivityDielectric loss
Du, B.; Chen, N.; Mai, Y.; Zhang, G.; Zhao, Y. Improving the hydrophobicity and insulation properties of epoxy resins by the self-assembly-induced coating of fluorinated graphene.ACS Appl. Mater. Interfaces2023,15, 32895−32902..
Wen, Y.; Chen, C.; Ye, Y.; Xue, Z.; Liu, H.; Zhou, X.; Zhang, Y.; Li, D.; Xie, X.; Mai, Y. W. Advances on thermally conductive epoxy-based composites as electronic packaging underfill materials-a review.Adv. Mater.2022,34, 2201023..
Zhu, H. Y.; Zhu, Y. J.; Bao, D.; Pei, L. C.; Xu, F., Wang, Z.; Wang, H. Y. Research on improving the thermal conductivity of epoxy resin with flexible assisted rigid groups.Chinese J. Polym. Sci.2024, 1−10..
Miao, Z.; Xie, C.; Wu, Z.; Zhao, Y.; Zhou, Z.; Wu, S.; Huang, R. Self-stacked 3D anisotropic BNNS network guided bypara-aramid nanofibers for highly thermal conductive dielectric nanocomposites.ACS Appl. Mater. Interfaces2023,15, 24880−24891..
Li, C.; Yang, Y.; Xu, G.; Zhou, Y.; Jia, M.; Zhong, S.; Gao, Y.; Park, C.; Liu, Q.; Wang, Y. Insulating materials for realising carbon neutrality: opportunities, remaining issues and challenges.High Volt.2022,7, 610−632..
Li, W.; Zhang, Y.; Zhao, X.; Liu, R.; Liu, H.; Huang, Z.; Zhang, G. Full-life-cycle eco-friendly polymeric insulating materials: research progress and future prospects.J. Phys. D Appl. Phys.2023,56, 373003..
Liu, W.; Chen, J.; Jiang, P.; Huang, X. Environmental-friendly electrical insulating thermosets and preparation technology.Trans. China Electrotechnol. Soc.2022,37, 1115−1127..
Juhl, M.; Hauschild, M. Z.; Dam-Johansen, K. Assessing the environmental sustainability of lignin-based epoxy resins for coating production.ACS Sustainable Chem. Eng.2024,12, 4970−4978..
Xue, M.; Hu, S.; Zhang, S.; Ou, J.; Chen, H.; Liao, Y.; Yue, F. Flexible and heat-resisting lignin-based epoxy resins by hardwood kraft low-molecular-weight lignin as a sustainable substitute for bisphenol A.ACS Sustain. Chem. Eng.2023,11, 16774−16784..
Guan, H.; Li, Z.; Xu, Q.; Meng, J.; Guo, K. Dual bio-based epoxy resin as green substitute for DGEBA analogue with high performances.React. Funct. Polym.2023,191, 105687..
Huang, X.; Ding, C.; Wang, Y.; Zhang, S.; Duan, X.; Ji, H. Dual dynamic cross-linked epoxy vitrimers used for strong, detachable, and reworkable adhesives.ACS Appl. Mater. Interfaces2024,16, 38586−38605..
Liu, J.; Wang, S.; Peng, Y.; Zhu, J.; Zhao, W.; Liu, X. Advances in sustainable thermosetting resins: from renewable feedstock to high performance and recyclability.Prog. Polym. Sci.2021,113, 101353..
Chen, M.; Dai, J.; Zhang L.; Wang, S.; Liu, J.; Wu, Y.; Liu, X. The role of renewable protocatechol acid in epoxy coating modification: significantly improved antibacterial and adhesive properties.Chinese J. Polym. Sci.2024,42, 63−72..
Zhao, W.; Liu, J.; Wang, S.; Dai, J.; Liu, X. Bio-based thermosetting resins: from molecular engineering to intrinsically multifunctional customization.Adv. Mater.2024, 2311242..
Hao, Y.; Zhong, L.; Li, T.; Zhang, J.; Zhang, D. High-performance recyclable and malleable epoxy resin with vanillin-based hyperbranched epoxy resin containing dual dynamic bonds.ACS Sustainable Chem. Eng.2023,11, 11077−11087..
Yang, K., Dai, J., Zhao, W., Wang, S., Liu, X. Bio-based epoxy resin demonstrating high breakdown strength and low dielectric lossviaintrinsic molecular charge traps construction.Compos. Part B-Eng.2024,284, 111728..
Liguori, A.; Oliva, E.; Sangermano, M.; Hakkarainen, M. Digital light processing 3D printing of isosorbide- and vanillin-based ester and ester-imine thermosets: structure-property recyclability relationships.ACS Sustainable Chem. Eng.2023,11, 14601−14613..
Wu, X.; Hartmann, P.; Berne, D.; De Bruyn, M.; Cuminet, F.; Wang, Z.; Zechner, J. M.; Boese, A. D.; Placet, V.; Caillol, S. Closed-loop recyclability of a biomass-derived epoxy-amine thermoset by methanolysis.Science2024,384, eadj9989..
Yang, W.; Yi, Q.; Liu, F.; Pan, X.; Zeng, Y. Fabrication of malleable, repairable, weldable, recyclable and robust epoxy vitrimers from itaconic acid for recycled adhesion.Eur. Polym. J.2023,196, 112278..
Nabipour, H.; Wang, X.; Song, L.;&Hu, Y. Intrinsically anti-flammable apigenin-derived epoxy thermosets with high glass transition temperature and mechanical strength.Chinese J. Polym. Sci.2022,40, 1259−1268..
Liu, Z.; Zhu, X.; Tian, Y.; Zhou, K.; Cheng, J.; Zhang, J. Bio-based recyclable form-stable Phase change material based on thermally reversible diels-alder reaction for sustainable thermal energy storage.Chem. Eng. J.2022,448, 137749..
Zhang, S.; Yu, Q.; Liu, P.; Guo, M.; Ren, J.; Li, H.; Hu, Y.; Zhou, G. Biobased inverse vulcanized polymer from magnolol as a multifunctional ingredient for carbon-black-reinforced rubber composites.ACS Sustainable Chem. Eng.2023,11, 18041−18050..
Gu, H.; Cao, Q.; Li, J.; Zhao, J.; Zhang, S.; Jian, X.; Weng, Z. Enhancing the comprehensive performance of bisphenol A epoxy resin via blending with a bio-based counterpart.Polymer2023,280, 126038..
Zhang, S.; Chen, W.; Zhao, Y.; Ding, L.; Pan, X.; Du, B.; Shen, H.; Gong, C.; Yang, W.; Yang, K. Designing multi-aromatic ring epoxy composites to integrate high insulation and high heat resistance performances by electron-induced effect.Compos. Part B-Eng.2022,243, 110107..
Qi, Y.; Weng, Z.; Kou, Y.; Li, J.; Cao, Q.; Wang, J.; Zhang, S.; Jian, X. Facile synthesis of bio-based tetra-functional epoxy resin and its potential application as high-performance composite resin matrix.Compos. Part B-Eng.2021,214, 108749..
Mizerovskiy, L.; Smirnov, P. Viscosity and internal friction in liquids.Russ. J. Gen. Chem.2021,91, 1797−1806..
Liang, H.; Du, B.; Li, J.; Wang, Z. Mechanical stress distribution and risk assessment of 110 kV GIS insulator considering Al2O3settlement.High Volt.2019,4, 65−71..
Polunin, Y.; Domnich, B.; Tiwari, S.; Thorat, S.; Sibi, M.; Voronov, A. Free radical (Co) polymerization of aromatic vinyl monomers derived from vanillin.Eur. Polym. J.2023,201, 112546..
Li, Z.; Liu, J.; Ohki, Y.; Chen, G.; Gao, H.; Li, S. Surface flashover in 50 years: theoretical models and competing mechanisms.High Volt.2023,8, 853−877..
Jia, B.; Zhou, J.; Chen, Y.; Lv, Z.; Guo, H.; Zhang, Z.; Zhu, Z.; Yu, H.; Wang, Y.; Wu, K. Local charge transport at different interfaces in epoxy composites.Nanotechnology2022,33, 345709..
Sui, H.; An, D.; Yang, K.; Zhang, Z.; Zhang, X.; Zhou, F.; Li, J.; Wu, K. Anomalous residual stress behavior and corresponding dielectric properties of epoxy resin induced by physical aging.IEEE T. Dielect. El. In.2023,30, 1787−1794..
Haq, I. U.; Wang, F.; Akram, S.; Ahmed, M.; Nazir, M. T. Significantly enhanced flashover voltage of epoxy in vacuum by graded surface roughness modification.High Volt.2023,8, 997−1010..
Yang, X.; Zhou, R.; Song, B.; Sun, G.; Wang, C.; Zhao, X.; Zou, F.; Lian, R.; Li, W.; Liu, H. Significantly enhanced flashover voltage of epoxy in vacuum by graded surface roughness modification.J. Phys. D Appl. Phys.2023,57, 085201..
Li, M.; Niu, H.; Shang, K.; Lang, J.; Gao, Y.; Li, B.; Zhao, J.; Li, Z.; Feng, Y.; Li, S. Effect of electron beam irradiation on surface molecule and flashover voltage of epoxy composites.High Volt.2024,9, 528−836..
Zha, J.; Xiao, M.; Wan, B.; Wang, X.; Dang, Z.; Chen, G. Polymer dielectrics for high-temperature energy storage: constructing carrier traps.Prog. Mater. Sci.2023, 101208..
Zhou, W.; Wang, Y.; Kong, F.; Peng, W.; Wang, Y.; Yuan, M.; Han, X.; Liu, X.; Li, B. Advances in liquid crystal epoxy: molecular structures, thermal conductivity, and promising applications in thermal management.Energ. Environ. Mater.2023, e12698..
0
浏览量
2
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构