FOLLOWUS
a.State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
b.Engineering Research Center of Elastomer Materials Energy Conservation and Resources, Ministry of Education, Beijing 100029, China
c.Key Laboratory of Carbon Fiber and Functional polymers, Beijing University of Chemical Technology, Beijing 100029, China
d.Center of Advanced Elastomer Materials, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
wangrg@mail.buct.edu.cn (R.G.W.)
lifz@mail.buct.edu.cn (F.Z.L.)
luyonglai@mail.buct.edu.cn (Y.L.L.)
纸质出版日期:2025-02-01,
网络出版日期:2025-01-18,
收稿日期:2024-09-12,
修回日期:2024-10-11,
录用日期:2024-10-15
Scan QR Code
Impact of Hard Segment Structures on Fatigue Threshold of Casting Polyurethane Using Cutting Method[J]. 高分子科学(英文), 2025,43(2):303-315.
GUANG-ZHI JIN, LE-HANG CHEN, YU-ZHEN GONG, et al. Impact of Hard Segment Structures on Fatigue Threshold of Casting Polyurethane Using Cutting Method. [J]. Chinese journal of polymer science, 2025, 43(2): 303-315.
Impact of Hard Segment Structures on Fatigue Threshold of Casting Polyurethane Using Cutting Method[J]. 高分子科学(英文), 2025,43(2):303-315. DOI: 10.1007/s10118-025-3250-9.
GUANG-ZHI JIN, LE-HANG CHEN, YU-ZHEN GONG, et al. Impact of Hard Segment Structures on Fatigue Threshold of Casting Polyurethane Using Cutting Method. [J]. Chinese journal of polymer science, 2025, 43(2): 303-315. DOI: 10.1007/s10118-025-3250-9.
The PPDI-CPU exhibits a more regular microstructure with larger
denser spherulites
which enhances stress distribution and inhibits crack propagation
resulting in superior fatigue performance. In contrast
the NDI-CPU shows sparser spherulite distribution
while TDI-CPU lacks a distinct spherulitic structure.
The fatigue resistance of casting polyurethane (CPU) is crucial in various sectors
such as construction
healthcare
and the automotive industry. Despite its importance
no studies have reported on the fatigue threshold of CPU. This study employed an advanced Intrinsic Strength Analyzer (ISA) to evaluate the fatigue threshold of CPUs
systematically exploring the effects of three types of isocyanates (PPDI
NDI
TDI) that contribute to hard segment structures based on the cutting method. Employing multiple advanced characte
rization techniques (XRD
TEM
DSC
AFM)
the results indicate that PPDI-based polyurethane exhibits the highest fatigue threshold (182.89 J/m
2
) due to a highest phase separation and a densely packed spherulitic structure
although the hydrogen bonding degree is the lowest (48.3%). Conversely
NDI-based polyurethane
despite having the high hydrogen bonding degree (53.6%)
exhibits moderate fatigue performance (122.52 J/m
2
)
likely due to a more scattered microstructure. TDI-based polyurethane
with the highest hydrogen bonding degree (59.1%) but absence of spherulitic structure
shows the lowest fatigue threshold (46.43 J/m
2
). Compared to common rubbers (NR
NBR
EPDM
BR)
the superior fatigue performance of CPU is attributed to its well-organized microstructure
polyurethane possesses a higher fatigue threshold due to its high phase separation degree and orderly and dense spherulitic structure which enhances energy dissipation and reduces crack propagation.
Casting polyurethaneFatigue thresholdCutting methodHard segment structuresMaterials characterization
Yu, X.; Yuan, Y.; Liang, C.; Wang, X.; Wang, S.; Deng, Z. Development and characterization of high friction polyurethane bearings for bridge engineering applications.Constr. Build. Mater.2024,438, 136846..
Samad, A.; Siew, W. H.; Given, M.; Liggat, J.; Timoshkin, I. Investigating the impact of hardness on dielectric breakdown characteristics of polyurethane.ACS Omega2024,9, 24538−24545..
Król, P.; Pilch-Pitera, B. Phase structure and thermal stability of crosslinked polyurethane elastomers based on well-defined prepolymers.J. Appl. Polym. Sci.2007,104, 1464−1474..
Peebles, L. H., Jr. Sequence length distribution in segmented block copolymers.Macromolecules1974,7, 872−882..
Cui, Y.; Wang, H.; Pan, H.; Yan, T.; Zong, C. The effect of mixed soft segment on the microstructure of thermoplastic polyurethane.J. Appl. Polym. Sci.2021,138, 51346..
Chang, Z.; Fahs, G. B.; Hudson, A. G.; Orler, E. B.; Moore, R. B.; Wilkes, G. L.; Turner, S. R. Synthesis and properties of segmented polyurethanes with triptycene units in the soft segment.Macromol. Chem. Phys.2015,216, 1180−1191..
Sheth, J. P.; Aneja, A.; Wilkes, G. L.; Yilgor, E.; Atilla, G. E.; Yilgor, I.; Beyer, F. L. Influence of system variables on the morphological and dynamic mechanical behavior of polydimethylsiloxane based segmented polyurethane and polyurea copolymers: a comparative perspective.Polymer2004,45, 6919−6932..
Pangon, A.; Dillon, G. P.; Runt, J. Influence of mixed soft segments on microphase separation of polyurea elastomers.Polymer2014,55, 1837−1844..
Petcharoen, K.; Sirivat, A. Electrostrictive properties of thermoplastic polyurethane elastomer: effects of urethane type and soft-hard segment composition.Curr. Appl. Phys.2013,13, 1119−1127..
Das, S.; Cox, D. F.; Wilkes, G. L.; Klinedinst, D. B.; Yilgor, I.; Yilgor, E.; Beyer, F. L. Effect of symmetry and H-bond strength of hard segments on the structure-property relationships of segmented, nonchain extended polyurethanes and polyureas.J. Macromol. Sci. B2007,46, 853−875..
Li, X.; Lu, Y.; Wang, H.; Pöselt, E.; Eling, B.; Men, Y. Crystallization of hard segments in MDI/BD-based polyurethanes deformed at elevated temperature and their dependence on the MDI/BD content.Eur. Polym. J.2017,97, 423−436..
. Corcuera, M. A.; Rueda, L.; Saralegui, A.; Martín, M. D.; Fernández-d'Arlas, B.; Mondragon, I.; Eceiza, A. Effect of diisocyanate structure on the properties and microstructure of polyurethanes based on polyols derived from renewable resources.J. Appl. Polym. Sci. 2011, 122 (6), 3677-3685..
Luo, Y.-L.; Gao, W.-T.; Luo, Z.-Y.; Li, C.-H. Toward mechanically robust self-healing polyurethanes using dynamics chemistry.Mater. Chem. Front.2024,8, 1767−1791..
Imre, B.; Gojzewski, H.; Check, C.; Chartoff, R.; Vancso, G. J. Properties and phase structure of polycaprolactone-based segmented polyurethanes with varying hard and soft segments: effects of processing conditions.Macromol. Chem. Phys.2018,219, 1700214..
Candau, N.; Stoclet, G.; Tahon, J.-F.; Demongeot, A.; Yilgor, E.; Yilgor, I.; Menceloglu, Y. Z.; Oguz, O. Mechanical reinforcement and memory effect of strain-induced soft segment crystals in thermoplastic polyurethane-urea elastomers.Polymer2021,223, 123708..
Ding, J.; Ye, L. Mechanical and solvent-resistance properties of casting polyurethane elastomers.J. Macromol. Sci. B2012,51, 1125−1138..
Wang, S.; Yuan, Y.; Tan, P.; Zhu, H.; Luo, K. Experimental study on mechanical properties of casting high-capacity polyurethane elastomeric bearings.Constr. Build. Mater.2020,265, 120725..
Zhang, P.; Zhang, G.; Pan, J.; Ma, C.; Zhang, G. Non-isocyanate polyurethane coating with high hardness, superior flexibility, and strong substrate adhesion.ACS Appl. Mater. Interfaces2023,15, 5998−6004..
Nagy, L.; Vadkerti, B.; Lakatos, C.; Fehér, P. P.; Zsuga, M.; Kéki, S. Kinetically equivalent functionality and reactivity of commonly used biocompatible polyurethane crosslinking agents.Int. J. Mol. Sci.2021,22, 4059..
Tae Moon, H.; Lee, Y. K.; Koo Han, J.; Byun, Y. A novel formulation for controlled release of heparin-DOCA conjugate dispersed as nanoparticles in polyurethane film.Biomaterials2001,22, 281−289..
Yu, X.; Shi, M.; Wang, X.; Yuan, Y.; Wang, S.; Deng, Z.; Zhu, H. Effect of water immersion on the seismic isolation performance of castable polyurethane bearing.Constr. Build. Mater.2024,412, 134660..
Li, J.; Hutchings, I. M. Resistance of cast polyurethane elastomers to solid particle erosion.Wear1990,135, 293−303..
Oprea, S.; Potolinca, V. O.; Oprea, V. Synthesis and properties of new crosslinked polyurethane elastomers based on isosorbide.Eur. Polym. J.2016,83, 161−172..
Ammam, M.; Fransaer, J. Highly sensitive and selective glutamate microbiosensor based on cast polyurethane/AC-electrophoresis deposited multiwalled carbon nanotubes and then glutamate oxidase/electrosynthesized polypyrrole/Pt electrode.Biosens.Bioelectron.2010,25, 1597−1602..
Koyama, A.; Suetsugu, D.; Fukubayashi, Y.; Mitabe, H. Experimental study on the dynamic properties of rigid polyurethane foam in stress-controlled cyclic uniaxial tests.Constr. Build. Mater.2022,321, 126377..
Choi, E.; Lee, J. S.; Jeon, H. K.; Park, T.; Kim, H. T. Static and dynamic behavior of disk bearings for OSPG railway bridges under railway vehicle loading.Nonlinear Dyn.2010,62, 73−93..
Jamil, A.; Guan, Z. W.; Cantwell, W. J. The static and dynamic response of CFRP tube reinforced polyurethane.Compos. Struct.2017,161, 85−92..
Zhang, W.; Hu, J.; Tang, J.; Wang, Z.; Wang, J.; Lu, T.; Suo, Z. Fracture toughness and fatigue threshold of tough hydrogels.ACS Macro Lett.2019,8, 17−23..
Scetta, G.; Selles, N.; Heuillet, P.; Ciccotti, M.; Creton, C. Cyclic fatigue failure of TPU using a crack propagation approach.Polym. Test.2021,97, 107140..
Scetta, G.; Euchler, E.; Ju, J.; Selles, N.; Heuillet, P.; Ciccotti, M.; Creton, C. Self-organization at the crack tip of fatigue-resistant thermoplastic polyurethane elastomers.Macromolecules2021,54, 8726−8737..
Wang, S.; Tang, S.; He, C.; Wang, Q. Cyclic deformation and fatigue failure mechanisms of thermoplastic polyurethane in high cycle fatigue.Polymers2023,15, 899..
Lee, J. H.; Lee, H. S.; Kwak, J. B. Mechanical characterization of polymeric thin films using nano cutting method.Int. J. Precis. Eng. Man.2020,21, 1091−1097..
Ribas, M.; Akhavan-Safar, A.; Carbas, R. J. C.; Marques, E. A. S.; Wenig, S.; da Silva, L. F. M. Mixed mode fatigue crack growth and fatigue threshold analysis in polyurethane adhesives at elevated temperatures.Int. J. Fatigue2024,183, 108275..
Rodriguez, E. L.; Basar, R.; Kolycheck, E. G.; Tseng, H. S. Fatigue cut growth of thermoplastic polyurethanes.J. Reinf. Plast. Compos.1994,13, 2−19..
. Robertson, C. G.; Stoček, R.; Mars, W. V., The Fatigue Threshold of Rubber and Its Characterization Using the CuttingMethod. InFatigue Crack Growth in Rubber Materials: Experiments and Modelling, Heinrich, G., Kipscholl, R., Stoček, R., Eds. Springer International Publishing: Cham, 2021 ; pp. 57−83..
Coleman, M. M.; Lee, K. H.; Skrovanek, D. J.; Painter, P. C. Hydrogen bonding in polymers. 4. Infrared temperature studies of a simple polyurethane.Macromolecules1986,19, 2149−2157..
. Yılgör, E.; Yılgör, İ.; Yurtsever, E. Hydrogen bonding and polyurethane morphology. I. Quantum mechanical calculations of hydrogen bond energies and vibrational spectroscopy of model compoundsPolymer 2002, 43, 6551-6559..
Painter, P. C.; Park, Y.; Coleman, M. M. Hydrogen bonding in polymer blends. 2. Theory.Macromolecules1988,21, 66−72..
Chattopadhyay, D. K.; Webster, D. C. Thermal stability and flame retardancy of polyurethanes.Prog. Polym. Sci.2009,34, 1068−1133..
Krol, P. Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers.Prog. Mater Sci.2007,52, 915−1015..
Cooper, S. L.; Tobolsky, A. V. Properties of Linear Elastomeric Polyurethanes.J. Appl. Polymer Sci.1966,10, 1−2..
Zhang, X.; Sun, S.; Ning, N.; Yan, S.; Wu, X.; Lu, Y.; Zhang, L. Visualization and quantification of the microstructure evolution of isoprene rubber during uniaxial stretching using AFM nanomechanical mapping.Macromolecules2020,53, 3082−3089..
Wang, J.; Wang, M.; Zhang, X.; Han, Y.; Wu, Y.; Wang, D.; Qin, X.; Lu, Y.; Zhang, L. Quantification characterization of hierarchical structure of polyurethane by advanced AFM and X-ray techniques.ACS Appl. Mater. Interfaces2023,15, 45388−45398..
Tocha, E.; Janik, H.; Debowski, M.; Vancso, G. J. Morphology of polyurethanes revisited by complementary AFM and TEM.J. Macromol. Sci. B2002,41, 1291−1304..
Janik, H. Electron-beam irradiation in TEM of hard-segment homopolymers and polyurethanes with different hard-segment content.Macromol. Rapid Commun.2004,25, 1167−1170..
Briber, R. M.; Thomas, E. L. Investigation of two crystal forms in MDI/BDO-based polyurethanes.J. Macromol. Sci. B1983,22, 509−528..
Bajsic, E. G.; Rek, V.; Sendijarevic, A.; Sendijarevic, V.; Frisch, K. C. DSC study of morphological changes in segmented polyurethane elastomers.J. Elastom. Plast.2000,32, 162−182..
Chien, Y. C.; Chuang, W. T.; Jeng, U. S.; Hsu, S. H. Preparation, characterization, and mechanism for biodegradable and biocompatible polyurethane shape memory elastomers.ACS Appl. Mater. Interfaces2017,9, 5419−5429..
Sánchez-Adsuar, M. S. Influence of the composition on the crystallinity and adhesion properties of thermoplastic polyurethane elastomers.Int. J. Adhes. Adhes.2000,20, 291−298..
Waletzko, R. S.; Korley, L. T. J.; Pate, B. D.; Thomas, E. L.; Hammond, P. T. Role of increased crystallinity in deformation-induced structure of segmented thermoplastic polyurethane elastomers with PEO and PEO-PPO-PEO soft segments and HDI hard segments.Macromolecules2009,42, 2041−2053..
Chen, C. P.; Dai, S. A.; Chang, H. L.; Su, W. C.; Wu, T. M.; Jeng, R. J. Polyurethane elastomers through multi-hydrogen-bonded association of dendritic structures.Polymer2005,46, 11849−11857..
Hergenrother, R. W.; Wabers, H. D.; Cooper, S. L. Effect of hard segment chemistry and strain on the stability of polyurethanes:in vivobiostability.Biomaterials1993,14, 449−458..
Zhu, P.; Dong, X.; Wang, D. Strain-induced crystallization of segmented copolymers: deviation from the classic deformation mechanism.Macromolecules2017,50, 3911−3921..
Yeh, F.; Hsiao, B. S.; Sauer, B. B.; Michel, S.; Siesler, H. W.In-situstudies of structure development during deformation of a segmented poly(urethane-urea) elastomer.Macromolecules2003,36, 1940−1954..
Darren; J.; Martin; Gordon; F.; Meijs; Pathiraja; A.; Gunatillake; Simon. The effect of average soft segment length on morphology and properties of a series of polyurethane elastomers. II. SAXS-DSC annealing study.J. Appl. Polym. Sci.1997,64, 803−817..
Ren, L.; Shah, P. N.; Faust, R. Morphology and tensile properties of model thermoplastic polyurethanes with MDI/butanediol based monodisperse hard segments.J. Polym. Sci., Part B: Polym. Phys.2016,54, 2485−2493..
Kim, J.; Zhang, G.; Shi, M.; Suo, Z. Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links.Science2021,374, 212−216..
Webber, R. E.; Creton, C.; Brown, H. R.; Gong, J. P. Large strain hysteresis and mullins effect of tough double-network hydrogels.Macromolecules2007,40, 2919−2927..
Lake, G. J.; Thomas, A. G. The strength of highly elastic materials.J. Math. Phys.1967,300, 108−119..
Chu, B.; Gao, T.; Li, Y.; Wang, J.; Desper, C. R.; Byrne, C. A. Microphase separation kinetics in segmented polyurethanes: effects of soft segment length and structure.Macromolecules1992,25, 5724−5729..
Lake, G. J.; Yeoh, O. H. Measurement of rubber cutting resistance in the absence of friction.Int. J. Fracture1978,14, 509−526..
Lake, G. J.; Lindley, P. B. The mechanical fatigue limit for rubber.J. Appl. Polym. Sci.1965,9, 1233−1251..
Slootman, J.; Yeh, C. J.; Millereau, P.; Comtet, J.; Creton, C. A molecular interpretation of the toughness of multiple network elastomers at high temperature.Proc. Natl Acad. Sci. U. S. A.2022,119, e2116127119..
Qiu, W.; Gurr, P. A.; Qiao, G. G. Regulating color activation energy of mechanophore-linked multinetwork elastomers.Macromolecules2020,53, 4090−4098..
Persson, B. N. J.; Albohr, O.; Heinrich, G.; Ueba, H. Crack propagation in rubber-like materials.J. Phys.-Condens. Mat.2005,17, R1071..
Matsuda, T.; Nakajima, T.; Fukuda, Y.; Hong, W.; Sakai, T.; Kurokawa, T.; Chung, U. I.; Gong, J. P. Yielding criteria of double network hydrogels.Macromolecules2016,49, 1865−1872..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构