FOLLOWUS
a.Rubber Research Group, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Nakhon Pathom 73170, Thailand
b.National Key Laboratory for Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
c.Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8550, Japan
d.Faculty of Science, University Tunku Abdul Rahman, Sungai Long Campus, Kajang 43000, Malaysia
jitladda.sak@mahidol.ac.th
纸质出版日期:2025-01-01,
网络出版日期:2024-10-21,
收稿日期:2024-08-03,
修回日期:2024-08-26,
录用日期:2024-08-31
Scan QR Code
Payungwong, N.; Cheng, H.; Nakajima, K.; Ho, C. C.; Sakdapipanich, J. Optimizing sulfur vulcanization for enhanced mechanical performance of Hevea latex-dipped film: insights from AFM peakforce quantitative nanomechanical mapping. Chinese J. Polym. Sci. 2025, 43, 70–82
NARUEPORN PAYUNGWONG, HAN CHENG, KEN NAKAJIMA, et al. Optimizing Sulfur Vulcanization for Enhanced Mechanical Performance of
Payungwong, N.; Cheng, H.; Nakajima, K.; Ho, C. C.; Sakdapipanich, J. Optimizing sulfur vulcanization for enhanced mechanical performance of Hevea latex-dipped film: insights from AFM peakforce quantitative nanomechanical mapping. Chinese J. Polym. Sci. 2025, 43, 70–82 DOI: 10.1007/s10118-024-3228-z.
NARUEPORN PAYUNGWONG, HAN CHENG, KEN NAKAJIMA, et al. Optimizing Sulfur Vulcanization for Enhanced Mechanical Performance of
Latex-dipped films prepared using sulfur vulcanization with different systems exhibit varying mechanical properties. The efficient vulcanization (EV) system produces a more rigid film compared to the conventional vulcanization (CV) system. The Young's modulus of sectioned pre-vulcanized CNR film showed a uniform distribution and increased as sulfur content increased.
This study delves into the pivotal role of sulfur vulcanization in defining the mechanical characteristics of natural rubber (NR) latex-dipped products. Utilizing sulfur vulcanization
known for its operational simplicity and cost-effectiveness
we examine its ability to enhance product elasticity and mechanical strength through various sulfidic bond formations such as mono-
di-
and polysulfidic bonds. Different vulcanization systems and sulfur contents were evaluated for their influence on the mechanical attributes of latex films
employing three types of NR latex
namely concentrated NR (CNR)
deproteinized NR (DPNR)
and small rubber particle NR (SRP)
each representing distinct non-rubber components (NRCs). The study utilized advanced atomic force microscopy (AFM) equipped with PeakForce Quantitative Nanomechanical Mapping (QNM) to visualize and measure Young's modulus distribution across the film of pre-vulcanized latex. Our findings reveal that films by CNR processed using the conventional vulcanization (CV) system exhibited enhanced tensile strength and elongation at break. It even showed a lower crosslink density than those processed using the efficient vulcanization (EV) system. Interestingly
DPNR films showed a more uniform distribution of Young's modulus
correlating well with their superior mechanical strength. In contrast
SRP films showed excessive network structure formation in the particles due to accelerated vulcanization rates
hampering subsequent post-vulcanization interparticle crosslinking in film formation and remaining more rigid. The overall results Illustrate clearly that the ultimate mechanical properties of the latex films are strongly dependent on the type of sulfidic bonds formed. This research reveals further the very intricate relationship between the vulcanization methods
sulfur content
and latex type in optimizing the mechanical performance of NR latex products. It provides valuable insights for industry practices aimed at improving the quality and performance of latex-dipped goods.
Natural rubberSulfur vulcanizationFilm formationNanomechanical propertiesNon-rubber componentsProteins and phospholipids
Tarachiwin, L.; Sakdapipanich, J.; Ute, K.; Kitayama, T.; Tanaka, Y. Structural characterization of α-terminal group of natural rubber. 2. Decomposition of branch-points by phospholipase and chemical treatments.Biomacromolecules2005,6, 1858−1863..
Nawamawat, K.; Sakdapipanich, J.T.; Ho, C.C.; Ma, Y.; Song, J.; Vancso, J.G. Surface nanostructure ofheveabrasiliensis natural rubber latex particles.Colloids Surf., A2011,390, 157−166..
Mekkriengkrai, D.; Sakdapipanich, J.T.; Tanaka, Y. Structural characterization of terminal groups in natural rubber: origin of nitrogenous groups.Rubber Chem. Technol.2006,79, 366−379..
Tangpakdee, J.; Tanaka, Y. Purification of natural rubber.J. Rubb. Res.1997,1, 112−119..
Rochette, C. N.; Crassous, J. J.; Drechsler, M.; Gaboriaud, F.; Eloy, M.; de Gaudemaris, B.; Duval, J. F. L. Shell structure of natural rubber particles: evidence of chemical stratification by electrokinetics and cryo-TEM.Langmuir2013,29, 14655−14665..
Tanaka, Y. Structural characterization of natural polyisoprenes: solve the mystery of natural rubber based on structural study.Rubber Chem. Technol.2001,74, 355−375..
Tanaka, Y.; Kawahara, S.; Tangpakdee, J. Structural characterization of natural rubber.Kautsch. Gummi Kunstst.1997,50, 6−11..
Randall, C.; James, Structural characterization of naturally occurringcis-polyisoprenes,ACS Symp. Ser. 1984 ,247, 233–244..
Liu, J.; Wang, S.; Tang, Z.; Huang, J.; Guo, B.; Huang, G. Bioinspired engineering of two different types of sacrificial bonds into chemically cross-linkedcis-1,4-polyisoprene toward a high-performance elastomer.Macromolecules2016,49, 8593−8604..
Kruželák, J.; Sýkora, R.; Hudec, I. Sulphur and peroxide vulcanisation of rubber compounds—overview.Chemical Papers2016,70, 1533−1555..
Cerveny, S.; Marzocca, A. J. Analysis of variation of molecular parameters of natural rubber during vulcanization in conformational tube model. II. Influence of Sulfur/accelerator Ratio.J. Appl. Polym. Sci.1999,74, 2747−2755..
Zhang, F.; Gong, Z.; Cai, W.; Qian, H. J.; Lu, Z. Y.; Cui, S. Single-chain Mechanics ofcis-1,4-polyisoprene and Polysulfide.Polymer2022,240, 124473..
Wang, Y.; Liu, H.; Zheng, T.; Peng, Z.; Wang, R.; Yu, H.; Wang, Q.; Liao, S.; Liao, L. Strain-induced crystallization behavior and tensile properties of natural rubber with different vulcanization bond types.Polym. Test.2023,129, 108289..
Che, J.; Toki, S.; Valentin, J.L.; Brasero, J.; Nimpaiboon, A.; Rong, L.; Hsiao, B. S. Chain dynamics and strain-induced crystallization of pre- and postvulcanized natural rubber latex using proton multiple quantum nmr and uniaxial deformation byin situsynchrotron X-ray diffraction.Macromolecules2012,45, 6491−6503..
Ho, C. C.; Khew, M. C. Surface morphology of prevulcanized natural rubber latex filmsby atomic force microscopy: new insight into the prevulcanization mechanism.Langmuir1999,15, 6208−6219..
Wiroonpochit, P.; Uttra, K.; Jantawatchai, K.; Hansupalak, N.; Chisti, Y. Sulfur-free prevulcanization of natural rubber latex by ultraviolet irradiation in the presence of diacrylates.Ind. Eng. Chem. Res.2017,56, 7217−7223..
Schlögl, S.; Temel, A.; Holzner, A.; Schaller, R.; Kern, W. Prevulcanization of natural rubber latex by UV techniques: a process towards reducing type IV chemical sensitivity of latex articles.Rubber Chem. Technol.2010,83, 133−148..
Purbaya, M.; Kobayashi, T.; Thamrongsiripak, N.; Hayichelaeh, C.; Boonkerd, K. Electron beam irradiation for enhancing the properties of natural rubber latex.Radiat. Phys. Chem.2023,212, 111193..
Suriawati, A.; Amir Hashim, M.Y. Visualizing nano-sized silicates in prevulcanised NR latex films.MRB Rubb. Technol. Dev. 2007 ,7..
Asrul, M.; Davies, R.T.; Ikram, A. Visualization of the network structure in some environmentally degraded natural rubber gloves.J. Rubb. Res.2003,6, 84−93..
Ho, C. C.; Khew, M. C. Low glass transition temperature (Tg) rubber latex film formation studied by atomic force microscopy.Langmuir2000,16, 2436−2449..
Sriring, M.; Nimpaiboon, A.; Kumarn, S.; Higaki, K.; Higaki, Y.; Kojio, K.; Takahara, A.; Ho, C.C.; Sakdapipanich, J. Film formation process of natural rubber latex particles: roles of the particle size and distribution of non-rubber species on film microstructure.Colloids Surf., A2020,592, 124571..
Sriring, M.; Nimpaiboon, A.; Kumarn, S.; Takahara, A.; Sakdapipanich, J. Enhancing viscoelastic and mechanical performances of natural rubber through variation of large and small rubber particle combinations.Polym. Test.2020,81, 106225..
Wei, Y. C.; Xia, J. H.; Zhang, L.; Zheng, T. T.; Liao, S. Influence of non-rubber components on film formation behavior of natural rubber latex.Colloid Polym. Sci.2020,298, 1263−1271..
Sakdapipanich, J.; Kalah, R.; Nimpaiboon, A.; Ho, C. C. Influence of mixed layer of proteins and phospholipids on the unique film formation behavior ofHeveanatural rubber latex.Colloids Surf., A2015,466, 100−106..
Nakajima, K.; Ito, M.; Nguyen, H.; Liang, X. Nanomechanics of the rubber-filler interface.Rubber Chem. Technol.2017,90, 272−284..
Nguyen, H. K.; Liang, X.; Ito, M.; Nakajima, K. Direct mapping of nanoscale viscoelastic dynamics at nanofiller/polymer interfaces.Macromolecules2018,51, 6085−6091..
Jacek Rafał, K.; Anna Maria, S.; Józef Tadeusz, H.; Justyna Kucińska, L. Natural rubber latex-origin, specification and application. InApplication and Characterization of Rubber Materials, Gülşen Akın, E.; Önder, P., Eds. IntechOpen: Rijeka, 2022 ; Ch. 5..
Payungwong, N.; Nakajima, K.; Ho, C. C.; Sakdapipanich, J. Unveiling the hidden networks: AFM insights into pre-vulcanized hevea latex and its profound impact on latex film mechanical properties.Macromol. Mater. Eng. 2024, 2400211..
Nakajima, K.; Ito, M.; Wang, D.; Liu, H.; Nguyen, H.K.; Liang, X.; Kumagai, A.; Fujinami, S. Nano-palpation AFM and its quantitative mechanical property mapping.Microscopy2014,63, 193−208..
Yamashita, S.; Mizuno, M.; Hayashi, H.; Yamaguchi, H.; Miyagi-Inoue, Y.; Fushihara, K.; Koyama, T.; Nakayama, T.; Takahashi, S. Purification and characterization of small and large rubber particles fromHeveabrasiliensis.Biosci., Biotechnol., Biochem.2018,82, 1011−1020..
Ohya, N.; Koyama, T. Biosynthesis of natural rubber and other natural polyisoprenoids.Biopolymers Online: Biology Chemistry Biotechnology Applications2005,2, 773109..
Liu, X. X.; He, M. F.; Luo, M. C.; Wei, Y. C.; Liao, S. The role of natural rubber endogenous proteins in promoting the formation of vulcanization networks.e-Polymer2022,22, 445−453..
0
浏览量
14
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构