FOLLOWUS
a.State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
b.School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
c.College of Chemistry, Jilin University, Changchun 130012, China
d.Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matters, College of Physical Science and Technology, Yili Normal University, Yining 835000, China
zysun@ciac.ac.cn
纸质出版日期:2024-12-01,
网络出版日期:2024-10-21,
收稿日期:2024-06-18,
修回日期:2024-07-21,
录用日期:2024-08-03
Scan QR Code
Wan, Z. L.; Zhao, W. C.; Qiu, H. K.; Zhou, S. S.; Chen, S. Y.; Fu, C. L.; Feng, X. Y.; Pan, L. J.; Wang K.; He, T. C.; Wang, Y. G.; Sun, Z. Y. Data-driven exploration of polymer processing effects on the mechanical properties in carbon black-reinforced rubber composites. Chinese J. Polym. Sci. 2024, 42, 2038–2047
ZI-LONG WAN, WAN-CHEN ZHAO, HAO-KE QIU, et al. Data-Driven Exploration of Polymer Processing Effects on the Mechanical Properties in Carbon Black-Reinforced Rubber Composites. [J]. Chinese journal of polymer science, 2024, 42(12): 2038-2047.
Wan, Z. L.; Zhao, W. C.; Qiu, H. K.; Zhou, S. S.; Chen, S. Y.; Fu, C. L.; Feng, X. Y.; Pan, L. J.; Wang K.; He, T. C.; Wang, Y. G.; Sun, Z. Y. Data-driven exploration of polymer processing effects on the mechanical properties in carbon black-reinforced rubber composites. Chinese J. Polym. Sci. 2024, 42, 2038–2047 DOI: 10.1007/s10118-024-3216-3.
ZI-LONG WAN, WAN-CHEN ZHAO, HAO-KE QIU, et al. Data-Driven Exploration of Polymer Processing Effects on the Mechanical Properties in Carbon Black-Reinforced Rubber Composites. [J]. Chinese journal of polymer science, 2024, 42(12): 2038-2047. DOI: 10.1007/s10118-024-3216-3.
Schematic diagram of the Study. (1) Data Collecting: Conducting experiments and processing raw data for a comprehensive dataset. (2) Modeling: Training and comparing to obtain optimal DNN models
which are then interpreted with Shapley additive explanations (SHAP). (3) Predicting: Predicting the sample space to facilitate the design of composite processes.
The performance and corresponding applications of polymer nanocomposites are highly dominated by the choice of base material
type of fillers
and the processing ways. Carbon black-filled rubber composites (CRC) exemplify this
playing a crucial role in various industries. However
due to the complex interplay between these factors and the resulting properties
a simple yet accurate model to predict the mechanical properties of CRC
considering different rubbers
fillers
and processing techniques
is highly desired. This study aims to predict the dispersion of fillers in CRC and forecast the resultant mechanical properties of CRC by leveraging machine learning. We selected various rubbers and carbon black fillers
conducted mixing and vulcanizing
and subsequently measured filler dispersion and tensile performance. Based on 215 experimental data points
we evaluated the performance of different machine learning models. Our findings indicate that the manually designed deep neural network (DNN) models achieved superior results
exhibiting the highest coefficient of determination (
R
2
) values (
>
0.95). Shapley additive explanations (SHAP) analysis of the DNN models revealed the intricate relationship between the properties of CRC and process parameters. Moreover
based on the robust predictive capabilities of the DNN models
we can recommend or optimize CRC fabrication process. This work provides valuable insights for employing machine learning in predicting polymer composite material properties and optimiz
ing the fabrication of high-performance CRC.
Polymer-matrix compositesMechanical propertiesProcess modelingMachine learning
Shah, A. A.; Hasan, F.; Shah, Z.; Kanwal, N.; Zeb, S. Biodegradation of natural and synthetic rubbers: a review.Int. Biodeter. Biodegr.2013,83, 145−157..
Fan, Y. R.; Fowler, G. D.; Zhao, M. The past, present and future of carbon black as a rubber reinforcing filler - a review.J. Clean. Prod.2020,247, 119115..
Wang, X. L.; Yang, K.; Zhang, P. Evaluation of the aging coefficient and the aging lifetime of carbon black-filled styrene-isoprene-butadiene rubber after thermal-oxidative aging.Compos. Sci. Technol.2022,220, 109258..
Shi, X. Y.; Sun, S. H.; Zhao, A.; Zhang, H. M.; Zuo, M.; Song, Y. H.; Zheng, Q. Influence of carbon black on the Payne effect of filled natural rubber compounds.Compos. Sci. Technol.2021,203, 108586..
Degrange, J. M.; Thomine, A.; Kapsa, P.; Pelletier, J. M.; Chazeau, L.; Vigier, G.; Dudragne, G.; Guerbé, L. Influence of viscoelasticity on the tribological behaviour of carbon black filled nitrile rubber (NBR) for lip seal application.Wear2005,259, 684−692..
Dong, Y. H.; Zhao, Y. T.; Wang, H.; Liu, P.; He, Y.; Lin, G. Y. Integration of life cycle assessment and life cycle costing for the eco-design of rubber products.Sci. Rep.2022,12, 595..
He, X. Z.; Shi, X. Y.; Hoch, M.; Gögelein, C. Mechanical properties of carbon black filled hydrogenated acrylonitrile butadiene rubber for packer compounds.Polym. Test.2016,53, 257−266..
Greenough, S.; Dumont, M. J.; Prasher, S. The physicochemical properties of biochar and its applicability as a filler in rubber composites: A review.Mater. Today Commun.2021,29, 102912..
Jovanovic, V.; Samarzija-Jovanovic, S.; Budinski-Simendic, J.; Markovic, G.; Marinovic-Cincovic, M. Composites based on carbon black reinforced NBR/EPDM rubber blends.Compos. Part B-Eng.2013,45, 333−340..
Yantaboot, K.; Amornsakchai, T. Effect of preparation methods and carbon black distribution on mechanical properties of short pineapple leaf fiber-carbon black reinforced natural rubber hybrid composites.Polym. Test.2017,61, 223−228..
Hait, S.; De, D.; Ghosh, A. K.; Al Aiti, M.; Ghosh, P.; Chanda, J.; Mukhopadhyay, R.; Dasgupta, S.; Wiessner, S.; Heinrich, G.; Das, A. Treasuring waste lignin as superior reinforcingfiller in highcis-polybutadiene rubber: A direct comparative study with standard reinforcing silica and carbon black.J. Clean. Prod.2021,299, 126841..
Xiao, J. C.; Hobson, J.; Ghosh, A.; Haranczyk, M.; Wang, D. Y. Flame retardant properties of metal hydroxide-based polymer composites: A machine learning approach.Compos. Commun.2023,40, 101593..
Parkinson, D.; Blanchard, A. Factors influencing the configuration of carbon particles in rubber.Rubber Chem. Technol.1949,22, 118−137..
Narongthong, J.; Sae-Oui, P.; Sirisinha, C. Effects of Mixing Parameters and Their Interactions on Properties of Carbon Black Filled Styrene-Butadiene Rubber.Rubber Chem. Technol.2018,91, 521−536..
Salaeh, S.; Nakason, C. Influence of modified natural rubber and structure of carbon black on properties of natural rubber compounds.Polym. Composite2012,33, 489−500..
Azura, A. R.; Leow, S. L. Effect of carbon black loading on mechanical, conductivity and ageing properties of Natural Rubber composites.Mater. Today-Proc.2019,17, 1056−1063..
Ulmer, J.; Chirico, V.; Scott, C. The effect of carbon black type on the dynamic properties of natural rubber.Rubber Chem. Technol.1973,46, 897−926..
Wang, L. H.; Ding, T. H.; Wang, P. Influence of carbon black concentration on piezoresistivity for carbon-black-filled silicone rubber composite.Carbon2009,47, 3151−3157..
Lay, M.; Rusli, A.; Abdullah, M. K.; Hamid, Z. A. A.; Shuib, R. K. Converting dead leaf biomass into activated carbon as a potential replacement for carbon black filler in rubber composites.Compos. Part B-Eng.2020,201, 108366..
Dannenberg, E. M. Filler Choices in the Rubber Industry.Rubber Chem. Technol. 1982,55, 860-880..
Himanen, L.; Geurts, A.; Foster, A. S.; Rinke, P. Data-Driven Materials Science: Status, Challenges, and Perspectives.Adv. Sci.2019,6, 1900808..
Cole, J. M. A Design-to-Device Pipeline for Data-Driven Materials Discovery.Accounts Chem. Res.2020,53, 599−610..
Sharma, A.; Mukhopadhyay, T.; Rangappa, S. M.; Siengchin, S.; Kushvaha Advances in Computational Intelligence of Polymer Composite Materials: Machine Learning Assisted Modeling, Analysis and Design. Arch.Comput. Method E2022,29, 3341−3385..
McDonald, S. M.; Augustine, E. K.; Lanners, Q.; Rudin, C.; Brinson, L. C.; Becker, M. L. Applied machine learning as a driver for polymeric biomaterials design.Nat. Commun.2023,14, 4838..
Yin, J.; Lei, Q.; Li, X.; Zhang, X. Y.; Meng, X. P.; Jiang, Y. B.; Tian, L.; Zhou, S.; Li, Z. A novel neural network-based alloy design strategy: Gated recurrent unit machine learning modeling integrated with orthogonal experiment design and data augmentation.Acta Mater.2023,243, 118420..
Zhang, Z. L.; Zhang, Z. Z.; Di Caprio, F.; Gu, G. X. Machine learning for accelerating the design process of double-double composite structures.Compos. Struct.2022,285, 115233..
Humfeld, K. D.; Gu, D. W.; Butler, G. A.; Nelson, K.; Zobeiry, N. A machine learning framework for real-time inverse modeling and multi-objective process optimization of composites for active manufacturing control.Compos. Part B-Eng.2021,223, 109150..
Zobeiry, N.; Reiner, J.; Vaziri, R. Theory -guided machine learning for damage characterization of composites.Compos. Struct.2020,246, 112407..
Rong, C.; Zhou, L.; Zhang, B. W.; Xuan, F. Z. Machine learning for mechanics prediction of 2D MXene-based aerogels.Compos. Commun.2023,38, 101474..
Wan, Z.; Chen, S.; Feng, X.; Sun, Z.-Y. From processing to properties: Enhancing machine learning models with microstructural information in polymer nanocomposites.Compos. Commun.2024,51, 102072..
Wagner, H. N. R.; Köke, H.; Dähne, S.; Niemann, S.; Hühne, C.; Khakimova, R. Decision tree-based machine learning to optimize the laminate stacking of composite cylinders for maximum buckling load and minimum imperfection sensitivity.Compos. Struct.2019,220, 45−63..
Mahjoubi, S.; Barhemat, R.; Guo, P. W.; Meng, W. N.; Bao, Y. Prediction and multi-objective optimization of mechanical, economical, and environmental properties for strain-hardening cementitious composites (SHCC) based on automated machine learning and metaheuristic algorithms.J. Clean. Prod.2021,329, 129665..
Yang, J. L.; Zeng, B. W.; Ni, Z.; Fan, Y. C.; Hang, Z. Y.; Wang, Y.; Feng, C.; Yang, J. Comparison of traditional and automated machine learning approaches in predicting the compressive strength of graphene oxide/cement composites.Constr. Build. Mater.2023,394, 132179..
Shafighfard, T.; Bagherzadeh, F.; Rizi, R. A.; Yoo, D. Y. Data-driven compressive strength prediction of steel fiber reinforced concrete (SFRC) subjected to elevated temperatures using stacked machine learning algorithms.J. Mater. Res. Technol.2022,21, 3777−3794..
Choi, J.; Quagliato, L.; Lee, S.; Shin, J.; Kim, N. Multiaxial fatigue life prediction of polychloroprene rubber (CR) reinforced with tungsten nano-particles based on semi-empirical and machine learning models.Int. J. Fatigue2021,145, 106136..
Kojima, T.; Washio, T.; Hara, S.; Koishi, M. Synthesis of computer simulation and machine learning for achieving the best material properties of filled rubber.Sci. Rep.2020,10, 18127..
Han, S. L.; Dong, W. Z.; Sun, H.; Xiao, P.; Zhang, S. D.; Chen, L.; Li, Y. Real-time rubber quality model based on CNN-LSTM deep learning theory.Mater. Today Commun.2023,35, 106110..
Lundberg, S. M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J. M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S. I. From local explanations to global understanding with explainable AI for trees.Nat. Mach. Intell.2020,2, 56−67..
Sarma, S.; Verma, A. K.; Phadkule, S. S.; Saharia, M. Towards an interpretable machine learning model for electrospun polyvinylidene fluoride (PVDF) fiber properties.Comp. Mater. Sci.2022,213, 111661..
Mangalathu, S.; Hwang, S. H.; Jeon, J. S. Failure mode and effects analysis of RC members based on machine-learning-based SHapley Additive exPlanations (SHAP) approach.Eng. Struct.2020,219, 110927..
Li, Z. Extracting spatial effects from machine learning model using local interpretation method: An example of SHAP and XGBoost.Comput. Environ. Urban2022,96, 101845..
Rahman, A.; Malik, O. A.; Khan, M. M. Machine Learning-Assisted Estimation of the Photoantioxidant Activities of Bare, Mg, Cu, and Mg/Cu Dual-Doped ZnO.J. Phys. Chem. C2023,127, 10550−10562..
Bai, C.; Dai, Q.; He, J.; Fan, W. 2022, Chinese patent, CN113929803A.
Bai, C.; Dai, Q.; Cui, L.; Fan, W.; Dong, W. 2021, Chinese patent, CN113861323A.
Bai, C.; He, J.; Dai, Q.; Qi, Y.; Cui, L. 2018, Chinese patent, CN108409975A.
Robertson, C. G.; Hardman, N. J. Nature of Carbon Black Reinforcement of Rubber: Perspective on the Original Polymer Nanocomposite.Polymers2021,13, 538..
Chanda, J.; Dolui, T.; Hanumanthrao, S.; Shilavant, R.; Ghosh, P.; Mukhopadhyay, R. Influence of carbon black particle size on fatigue life of rubber compound by varying strain and temperature.J. Appl. Polym. Sci.2023,140, e54602..
Shuttleworth, M.; Watson, A.,Synthetic polyisoprene rubbers. In Developments in Rubber Technology—2: Synthetic Rubbers, Springer, Dordrecht. 1981 , p. 233-267..
0
浏览量
11
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构