FOLLOWUS
a.School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
b.Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
c.Department of Polymer Science and Engineering, University of Massachusetts Amherst, 120 Governors Drive, Amherst 01003, Massachusetts, United States
mmding@gdut.edu.cn (M.M.D.)
minglunli@umass.edu (M.L.L.)
纸质出版日期:2024-12-01,
网络出版日期:2024-11-07,
收稿日期:2024-07-04,
修回日期:2024-07-23,
录用日期:2024-08-03
Scan QR Code
Zhang, Y. S.; Qi, Z. Y.; Ding, M. M.; Li, M. L.; Shi, T. F. Translocation of ssDNA through charged graphene nanopores: effect of the charge density. Chinese J. Polym. Sci. 2024, 42, 2048–2058
YUAN-SHUO ZHANG, ZHI-YA QI, MING-MING DING, et al. Translocation of ssDNA through Charged Graphene Nanopores: Effect of the Charge Density. [J]. Chinese journal of polymer science, 2024, 42(12): 2048-2058.
Zhang, Y. S.; Qi, Z. Y.; Ding, M. M.; Li, M. L.; Shi, T. F. Translocation of ssDNA through charged graphene nanopores: effect of the charge density. Chinese J. Polym. Sci. 2024, 42, 2048–2058 DOI: 10.1007/s10118-024-3215-4.
YUAN-SHUO ZHANG, ZHI-YA QI, MING-MING DING, et al. Translocation of ssDNA through Charged Graphene Nanopores: Effect of the Charge Density. [J]. Chinese journal of polymer science, 2024, 42(12): 2048-2058. DOI: 10.1007/s10118-024-3215-4.
The study utilizes molecular dynamics simulations to explore how graphene nanopore charge densities affect ssDNA translocation. Results show that higher negative charges on graphene significantly slow ssDNA movement
thereby enhancing DNA sequencing accuracy by improving ionic current blockades. This highlights the potential of negatively charged graphene nanopores in sequencing optimization.
Nanopore sequencing harnesses changes in ionic current as nucleotides traverse a nanopore
enabling real-time decoding of DNA/RNA sequences. The instruments for the dynamic behavior of substances in the nanopore on the molecular scale are still very limited experimentally. This study employs all-atom molecular dynamics (MD) simulations to explore the impact of charge densities on graphene nanopore in the translocation of single-stranded DNA (ssDNA). We find that the magnitude of graphene’s charge
rather than the charge disparity between ssDNA and graphene
significantly influences ssDNA adsorption and translocation speed. Specifically
high negative charge densities on graphene nanopores are shown to substantially slow down ssDNA translocation
highlighting the importance of hydrodynamic effects and electrostatic repulsions. This indicates translocation is crucial for achieving distinct ionic current blockades
which plays a central role for DNA sequencing accuracy. Our findings suggest that negatively charged graphene nanopores hold considerable potential for optimizing DNA sequencing
marking a critical advancement in this field.
Nanopore sequencingGraphene nanoslitDNA translocationElectroosmotic flow
Qiu, H.; Zhou, W. Q.; Guo, W. L. Nanopores in graphene and other 2D materials: A decade's journey toward sequencing.ACS Nano2021,15, 18848−18864..
Wu, G. S.; Zhang, Y.; Si, W.; Sha, J. J.; Liu, L.; Chen, Y. F. Integrated solid-state nanopore devices for third generation DNA sequencing.Sci. China: Technol. Sci.2014,57, 1925−1935..
Bruijns, B.; Tiggelaar, R.; Gardeniers, H. Massively parallel sequencing techniques for forensics: A review.Electrophoresis2018,39, 2642−2654..
Macha, M.; Marion, S.; Nandigana, V. V. R.; Radenovic, A. 2D materials as an emerging platform for nanopore-based power generation.Nat. Rev. Mater. 2019, 4, 588-605..
Xue, L.; Yamazaki, H.; Ren, R.; Wanunu, M.; Ivanov, A. P.; Edel, J. B. Solid-state nanopore sensors.Nat. Rev. Mater.2020,5, 931−951..
Dekker, C. Solid-state nanopores.Nat. Nanotechnol.2007,2, 209−215..
Hu, Z. L.; Huo, M. Z.; Ying, Y. L.; Long, Y. T. Biological nanopore approach for single-molecule protein sequencing.Angew. Chem., Int. Edit.2021,60, 14738−14749..
Ying, Y. L.; Hu, Z. L.; Zhang, S. L.; Qing, Y. J.; Fragasso, A.; Maglia, G.; Meller, A.; Bayley, H.; Dekker, C.; Long, Y. T. Nanopore-based technologies beyond DNA sequencing.Nat. Nanotechnol.2022,17, 1136−1146..
Chien, C. C.; Shekar, S.; Niedzwiecki, D. J.; Shepard, K. L.; Drndic, M. Single-stranded DNA translocation recordingsthrough solid-state nanopores on glass chips at 10 MHz measurement bandwidth.ACS Nano2019,13, 10545−10554..
Wang, V.; Ermann, N.; Keyser, U. F. Current enhancement in solid-state nanopores depends on three-dimensional DNA structure.Nano Lett.2019,19, 5661−5666..
Wang, C. M.; Sensale, S.; Pan, Z. H.; Senapati, S.; Chang, H. C. Slowing down DNA translocation through solid-state nanopores by edge-field leakage.Nat. Commun.2021,12, 10..
Chau, C. C.; Radford, S. E.; Hewitt, E. W.; Actis, P. Macromolecular crowding enhances the detection of DNA and proteins by a solid-state nanopore.Nano Lett.2020,20, 5553−5561..
Geim, A. K. Graphene: Status and prospects.Science2009,324, 1530−1534..
Merchant, C. A.; Healy, K.; Wanunu, M.; Ray, V.; Peterman, N.; Bartel, J.; Fischbein, M. D.; Venta, K.; Luo, Z. T.; Johnson, A. T. C.; Drndic, M. DNA translocation through graphene nanopores.Nano Lett.2010,10, 2915−2921..
Garaj, S.; Hubbard, W.; Reina, A.; Kong, J.; Branton, D.; Golovchenko, J. A. Graphene as a subnanometre trans-electrode membrane.Nature2010,467, 190−193..
Graf, M.; Lihter, M.; Altus, D.; Marion, S.; Radenovic, A. Transverse detection of DNA using a MoS2 nanopore.Nano Lett.2019,19, 9075−9083..
Wang, Y. H.; Zhao, Y.; Bollas, A.; Wang, Y. R.; Au, K. F. Nanopore sequencing technology, bioinformatics and applications.Nat. Biotechnol.2021,39, 1348−1365..
Tsutsui, M.; Taniguchi, M.; Yokota, K.; Kawai, T. Identifying single nucleotides by tunnelling current.Nat. Nanotechnol.2010,5, 286−290..
Traversi, F.; Raillon, C.; Benameur, S. M.; Liu, K.; Khlybov, S.; Tosun, M.; Krasnozhon, D.; Kis, A.; Radenovic, A. Detecting the translocation of DNA through a nanopore using graphene nanoribbons.Nat. Nanotechnol.2013,8, 939−945..
Zhang, Z. S.; Shen, J. W.; Wang, H. B.; Wang, Q.; Zhang, J. Q.; Liang, L. J.; Ågren, H.; Tu, Y. Q. Effects of graphene nanopore geometry on DNA sequencing.J. Phys. Chem. Lett.2014,5, 1602−1607..
Garaj, S.; Liu, S.; Golovchenko, J. A.; Branton, D. Molecule-hugging graphene nanopores.Proc. Natl. Acad. Sci. U. S. A.2013,110, 12192−12196..
Shankla, M.; Aksimentiev, A. Conformational transitions and stop-and-go nanopore transport of single-stranded DNA on charged graphene.Nat. Commun.2014,5, 9..
Sathe, C.; Zou, X. Q.; Leburton, J. P.; Schulten, K. Computational investigation of DNA detection using graphene nanopores.ACS Nano2011,5, 8842−8851..
Zhang, W.; Zhang, Q.; Zhao, M. Q.; Kuhn, L. T. Direct writing on graphene 'paper' by manipulating electrons as 'invisible ink'.Nanotechnology2013,24, 6..
Song, B.; Schneider, G. F.; Xu, Q.; Pandraud, G.; Dekker, C.; Zandbergen, H. Atomic-scale electron-beam sculpting of near-defect-free graphene nanostructures.Nano Lett.2011,11, 2247−2250..
Sokolov, A. N.; Yap, F. L.; Liu, N.;Kim, K.; Ci, L. J.; Johnson, O. B.; Wang, H. L.; Vosgueritchian, M.; Koh, A. L.; Chen, J. H.; Park, J.; Bao, Z. N. Direct growth of aligned graphitic nanoribbons from a DNA template by chemical vapour deposition.Nat. Commun.2013,4, 8..
Xiong, M. Y.; Athreya, N.; Chakraborty, R.; Leburton, J. P. Ion trapping and thermionic emission across sub-nm pores.Nano Lett.2023,23, 11719−11726..
Jiang, H.; Fu, J. T.; Nie, C. B.; Sun, F. Y.; Tang, L. L.; Sun, J. X.; Zhu, M.; Shen, J.; Feng, S. L.; Shi, H. F.; Wei, X. Z. Gate modulation enhanced position-sensitive detectors using graphene/silicon-on-insulator structure.Carbon2021,184, 445−451..
Chen, H.; Zhou, P. J.; Liu, J. W.; Qiao, J. B.; Oezyilmaz, B.; Martin, J. Gate controlled valley polarizer in bilayer graphene.Nat. Commun.2020,11, 7..
Hu, R.; Tong, X.; Zhao, Q. Four aspects about solid-state nanopores for protein sensing: Fabrication, sensitivity, selectivity, and durability.Adv. Healthc. Mater.2020,9, 18..
Kowalczyk, S. W.; Wells, D. B.; Aksimentiev, A.; Dekker, C. Slowing down DNA translocation through a nanopore in lithium chloride.Nano Lett.2012,12, 1038−1044..
Yuan, Z. S.; Liu, Y. M.; Dai, M.; Yi, X.; Wang, C. Y. Controlling DNA translocation through solid-state nanopores.Nanoscale Res. Lett.2020,15, 9..
Shi, X.; Pumm, A. K.; Isensee, J.; Zhao, W. X.; Verschueren, D.; Martin-Gonzalez, A.; Golestanian, R.; Dietz, H.; Dekker, C. Sustained unidirectional rotation of a self-organized DNA rotor on a nanopore.Nat. Phys.2022,18, 1105−1111..
Schmid, S.; Stömmer, P.; Dietz, H.; Dekker, C. Nanopore electro-osmotic trap for the label-free study of single proteins and their conformations.Nat. Nanotechnol.2021,16, 1244−1250..
Qiu, Y. H.; Ma, L. Influences of electroosmotic flow on ionic current through nanopores: A comprehensive understanding.Phys. Fluids2022,34, 10..
Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers.SoftwareX2015,1, 19−25..
Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics.J. Mol. Graphics1996,14, 33−38..
Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; de Groot, B. L.; Grubmüller, H.; MacKerell, A. D. CHARMM36m: an improved force field for folded and intrinsically disordered proteins.Nat. Methods2017,14, 71−73..
Si, W.; Zhang, Y.; Wu, G. S.; Kan, Y. J.; Zhang, Y.; Sha, J. J.; Chen, Y. F. Discrimination of protein amino acid or its protonated state at single-residue resolution by graphene nanopores.Small2019,15, 10..
Wilson, J.; Aksimentiev, A. Water-compression gating of nanopore transport.Phys. Rev. Lett.2018,120, 6..
Wilson, J.; Sloman, L.; He, Z.; Aksimentiev, A. Graphene nanopores for protein sequencing.Biophys. J.2016,110, 326a..
Aksimentiev, A.; Brunner, R. K.; Cruz-Chu, E.; Comer, J.; Schulten, K. Modeling transport through synthetic nanopores.IEEE Nanotechnol. Mag.2009,3, 20−28..
Wells, D. B.; Belkin, M.; Comer, J.; Aksimentiev, A. Assessing graphene nanopores for sequencing DNA.Nano Lett.2012,12, 4117−4123..
Tyagi, A.; Chu, K.; Hossain, M. D.; Abidi, I. H.; Lin, W. Y.; Yan, Y. W.; Zhang, K.; Luo, Z. T. Revealing the mechanism of DNA passing through graphene and boron nitride nanopores.Nanoscale2019,11, 23438−23448..
Kuga, S.; Yang, J. H.; Takahashi, H.; Hiirama, K.; Iwasaki, T.; Kawarada, H. Detection of mismatched DNA on partially negatively charged diamond surfaces by optical and potentiometric methods.J. Am. Chem. Soc.2008,130, 13251−13263..
Nam, S. W.; Rooks, M. J.; Kim, K. B.; Rossnagel, S. M. Ionic field effect transistors with sub-10 nm multiple nanopores.Nano Lett.2009,9, 2044−2048..
Mei, T. T.; Liu, W. C.; Xu, G. H.; Chen, Y. X.; Wu, M. H.; Wang, L.; Xiao, K. Ionic transistors.ACS Nano2024,18, 4624−4650..
Case, D. A.; Aktulga, H. M.; Belfon, K.; Ben-Shalom, I.; Brozell, S. R.; Cerutti, D. S.; Cheatham III, T. E.; Cruzeiro, V. W. D.; Darden, T. A.; Duke, R. E.Amber 2021. University of California, San Francisco: 2021 ..
Prajapati, J. D.; Pangeni, S.; Aksoyoglu, M. A.; Winterhalter, M.; Kleinekathöfer, U. Changes in salt concentration modify the translocation of neutral molecules through a ΔCymA nanopore in a non-monotonic manner.ACS Nano2022,16, 7701−7712..
Smeets, R. M. M.; Keyser, U. F.; Krapf, D.; Wu, M. Y.; Dekker, N. H.; Dekker, C. Salt dependence of ion transport and DNA translocation through solid-state nanopores.Nano Lett.2006,6, 89−95..
Kawano, R.; Schibel, A. E. P.; Cauley, C.; White, H. S. Controlling the translocation of single-stranded DNA through α-Hemolysin ion channels using viscosity.Langmuir2009,25, 1233−1237..
Tan, C. S.; Fleming, A. M.; Ren, H.; Burrows, C. J.; White, H. S. γ-Hemolysin nanopore is sensitive to guanine-to-inosine substitutions in double-stranded DNA at the single-molecule level.J. Am. Chem. Soc. 2018, 140, 14224-14234..
Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of simple potential functions for simulating liquid water.J. Chem. Phys.1983,79, 926−935..
Yadav, P.; Cao, Z.; Barati Farimani, A. DNA detection with single-layer Ti3C2 MXene nanopore.ACS Nano2021,15, 4861−4869..
Huang, C. X.; Zhu, X. H.; Li, Z.; Ma, X. Y.; Li, N.; Luo, J.; Fan, J. Molecular insights into geometric and electrophoretic effects on DNA translocation speed through graphene nanoslit sensor.Carbon2022,191, 415−423..
Smolyanitsky, A.; Luan, B. Q. Nanopores in atomically thin 2D nanosheets limit aqueous single-stranded DNA transport.Phys. Rev. Lett.2021,127, 6..
Lv, W. P.; Chen, M. D.; Wu, R. A. The impact of the number of layers of a graphene nanopore on DNA translocation.Soft Matter2013,9, 960−966..
Li, J. P.; Wang, H. C.; Li, Y. S.; Han, K. Z. The impact of the number of layers of the graphene nanopores and the electrical field on ssDNA translocation.Mol. Simul.2017,43, 320−325..
Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling.J. Chem. Phys.2007,126, 7..
Berendsen, H. J.; Postma, J. v.; Van Gunsteren, W. F.; DiNola, A.; Haak, J. R. Molecular dynamics with coupling to an external bath.J. Chem. Phys.1984,81, 3684−3690..
Vainrub, A.; Pettitt, B. M. Surface electrostatic effects in oligonucleotide microarrays: Control and optimization of binding thermodynamics.Biopolymers2003,68, 265−270..
Heaton, R. J.; Peterson, A. W.; Georgiadis, R. M. Electrostatic surface plasmon resonance: Direct electric field-induced hybridization and denaturation in monolayer nucleic acid films and label-free discrimination of base mismatches.Proc. Natl. Acad. Sci. U. S. A.2001,98, 3701−3704..
Zhang, Y. H.; Zhou, Y. J.; Li, Z.; Chen, H. J.; Zhang, L.; Fan, J. Computational investigation of geometrical effects in 2D boron nitride nanopores for DNA detection.Nanoscale2020,12, 10026−10034..
Balasubramanian, R.; Pal, S.; Rao, A.; Naik, A.; Chakraborty, B.; Maiti, P. K.; Varma, M. M. DNA translocation through vertically stacked 2D layers of graphene and hexagonal boron nitride heterostructure nanopore.ACS Appl. Bio Mater.2021,4, 451−461..
Soni, N.; Freundlich, N.; Ohayon, S.; Huttner, D.; Meller, A. Single-file translocation dynamics of SDS-denatured, whole proteins through sub-5 nm solid-state Nanopores.ACS Nano2022,16, 11405−11414..
Soni, N.; Verma, N. C.; Talor, N.; Meller, A. Over 30-fold enhancement in DNA translocation dynamics through nanoscale pores coated with an anionic surfactant.Nano Lett.2023,23, 4609−4616..
Muthukumar, M. Theory of ionic conductivity with morphological control in polymers.ACS Macro Lett.2021,10, 958−964..
Teychené, J.; Roux-de Balmann, H.; Maron, L.; Galier, S. Investigation of ions hydration using molecular modeling.J. Mol. Liq.2019,294, 11..
Li, M. L.; Muthukumar, M. Electro-osmotic flow in nanoconfinement: Solid-state and protein nanopores.J. Chem. Phys.2024,160, 11..
Bayley, H. Holes with an edge.Nature2010,467, 164−165..
Pal, A.; Levy, Y. Structure, stability and specificity of the binding of ssDNA and ssRNA with proteins.PLoS Comput. Biol.2019,15, 32..
Qiu, H.; Sarathy, A.; Leburton, J. P.; Schulten, K. Intrinsic stepwise translocation of stretched ssDNA in graphene nanopores.Nano Lett.2015,15, 8322−8330..
Bond, P. J.; Guy, A. T.; Heron, A. J.; Bayley, H.; Khalid, S. Molecular dynamics simulations of DNA within a nanopore: Arginine-phosphate tethering and a binding/sliding mechanism for translocation.Biochemistry2011,50, 3777−3783..
Chu, J.; González-López, M.; Cockroft, S. L.; Amorin, M.; Ghadiri, M. R. Real-time monitoring of DNA polymerase function and stepwise single-nucleotide DNA strand translocation through a protein nanopore.Angew. Chem., Int. Edit.2010,49, 10106−10109..
Di Fiori, N.; Squires, A.; Bar, D.; Gilboa, T.; Moustakas, T. D.; Meller, A. Optoelectronic control of surface charge and translocation dynamics in solid-state nanopores.Nat. Nanotechnol.2013,8, 946−951..
Shi, W. Q.; Friedman, A. K.; Baker, L. A. Nanopore sensing.Anal. Chem.2017,89, 157−188..
Cho, Y.; Min, S. K.; Yun, J.; Kim, W. Y.; Tkatchenko, A.; Kim, K. S. Noncovalent interactions of DNA bases with naphthalene and graphene.J. Chem. Theory Comput.2013,9, 2090−2096..
Wilson, J.; Sloman, L.; He, Z.; Aksimentiev, A. Nanopore sequencing: Graphene nanopores for protein sequencing.Adv. Funct. Mater.2016,26, 4829−4829..
0
浏览量
36
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构