FOLLOWUS
a.Advanced Rheology Institute, Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
b.National Certified Enterprise Technology Center, Kingfa Science and Technology Co., Ltd., Guangzhou 510663, China
c.DPI, P.O. Box 902, 5600 AX Eindhoven, the Netherlands
huangxianbo@kingfa.com.cn (X.B.H.)
wyu@sjtu.edu.cn (W.Y.)
纸质出版日期:2024-12-01,
网络出版日期:2024-10-21,
收稿日期:2024-05-01,
修回日期:2024-06-28,
录用日期:2024-08-01
Scan QR Code
Hou, F. Y.; Peng, L.; Yu, F.; Huang, X. B.; Yu, W. Droplet bridging effect in polymer/polymer/filler ternary composites. Chinese J. Polym. Sci. 2024, 42, 1966–1975
FENG-YI HOU, LI PENG, FEI YU, et al. Droplet Bridging Effect in Polymer/Polymer/Filler Ternary Composites. [J]. Chinese journal of polymer science, 2024, 42(12): 1966-1975.
Hou, F. Y.; Peng, L.; Yu, F.; Huang, X. B.; Yu, W. Droplet bridging effect in polymer/polymer/filler ternary composites. Chinese J. Polym. Sci. 2024, 42, 1966–1975 DOI: 10.1007/s10118-024-3212-7.
FENG-YI HOU, LI PENG, FEI YU, et al. Droplet Bridging Effect in Polymer/Polymer/Filler Ternary Composites. [J]. Chinese journal of polymer science, 2024, 42(12): 1966-1975. DOI: 10.1007/s10118-024-3212-7.
A talc-POE hybrid network is formed in PP/POE/talc ternary blends with talc fillers selectively located at POE phase interface. The linear rheology behavior indicates that besides the "volume exclusion effect" of POE phase for talc fillers
the talc-POE hybrid network can further contribute to the reinforcement effect.
In particle-filled polymer composites with selective distributions of fillers in one phase
much attention has been focused on the "volume exclusion effect" in reducing the percolation threshold of filler
while the role of dispersed polymer phase acting as bridges of fillers in the particle network has largely been ignored. Herein
we studied industrially important ternary composites
polypropylene (PP)/ethylene-octene copolymer (a polyolefin elastomer
POE)/talc systems
and adopted rheology to reveal the bridging behavior of POE droplets in the network of talc particles. It is found that talc fillers concentrate in the PP phase using the "blend first" protocol
while more talc particles are located at the interface of PP and POE phases using the "filler first" protocol. Changing the POE viscosity and talc size can affect the migration of talc from the POE phase to the PP phase in the "filler first" protocol. The linear rheology behavior indicates that besides the "volume exclusion effect"
the talc-POE hybrid network can further contribute to the reinforcement effect. Meanwhile
the POE droplet bridging structure can facilitate the rebuilding of the hybrid network after large amplitude oscillatory shear
in contrast to the un-recoverable structures in the PP/talc binary composites. The correlation between rheology and selective distribution of fillers in ternary composites may provide practical guidance for processing and designing advanced polymer composites with controlled selective location of fillers.
PolypropyleneFiller selective localizationRheologyBridging
Wei, Y.; Zhou, H.; Deng, H.; Ji, W.; Tian, K.; Ma, Z.; Zhang, K.; Fu, Q. "Toolbox" for the processing of functional polymer composites.Nano-Micro Lett.2022,14, 1−41..
Taguet, A. Cassagnau, P.; Lopez-Cuesta, J. M. Structuration, selective dispersion and compatibilizing effect of (nano)fillers in polymer blends.Prog. Polym. Sci.2014,39, 1526−1563..
de Luna, M. S.; Filippone, G. Effects of nanoparticles on the morphology of immiscible polymer blends - challenges and opportunities.Eur. Polym. J.2016,79, 198−218..
Sumita, M.; Sakata, K.; Asai, S.; Miyasaka, K.; Nakagawa, H. Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black.Polym. Bull.1991,25, 265−271..
Nofar, M.; Salehiyan, R.; Ray, S. S. Influence of nanoparticles and their selective localization on the structure and properties of polylactide-based blend nanocomposites.Compos. Part B-Eng.2021,215, 1−29..
Plattier, J.; Benyahia, L.; Dorget, M.; Niepceron, F.; Tassin, J. F. Viscosity-induced filler localisation in immiscible polymer blends.Polymer2015,59, 260−269..
Liebscher, M.; Blais, M. O.; Pötschke, P.; Heinrich, G. A morphological study on the dispersion and selective localization behavior of graphene nanoplatelets in immiscible polymer blends of PC and SAN.Polymer2013,54, 5875−5882..
Mao, Z.; Sun, H.; Zhang, J. Selective distribution of SrTiO3in co-continuous composites: an effective method to improve the dielectric and mechanical properties.Compos. Part A-Appl. Sci. Manuf.2021,143, 1−11..
Dil, E. J.; Arjmand, M.; Li, Y.; Sundararaj, U.; Favis, B. D. Assembling copper nanowires at the interface and in discrete phases in PLA-based polymer blends.Eur. Polym. J.2016,85, 187−197..
Feng, J.; Chan, C.; Li, J. A method to control the dispersion of carbon black in an immiscible polymer blend.Polym. Eng. Sci.2003,43, 1058−1063..
Fenouillot, F.; Cassagnau, P.; Majeste, J. C. Uneven distribution of nanoparticles in immiscible fluids: Morphology development in polymer blends.Polymer2009,50, 1333−1350..
Goldel, A.; Marmur, A.; Kasaliwal, G. R.; Potschke, P.; Heinrich, G. Shape-dependent localization of carbon nanotubes and carbon black in an immiscible polymer blend during melt mixing.Macromolecules2011,44, 6094−6102..
Qi, X.; Yang, J.; Zhang, N.; Huang, T.; Zhou, Z.; Kühnert, I.; Pötschke, P.; Wang, Y. Selective localization of carbon nanotubes and its effect on the structure and properties of polymer blends.Prog. Polym. Sci.2021,123, 1−36..
Chen, J.; Liao, X.; Li, S.; Wang, W.; Guo, F.; Li, G. A promising strategy for efficient electromagnetic interference shielding by designing a porous double-percolated structure in MWCNT/polymer-based composites.Compos. Part A-Appl. Sci. Manuf.2020,138, 1−10..
Kim, D.; Lee, J. B.; Lee, D. Y. Selective localization of nanofiller on mechanical properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate) nanocompositesviathe surface energy and melt blending technique.Macromolecules2022,55, 3287−3300..
Huang, Z.; Zhao, M.; Zhang, G.; Song, J.; Qu, J. Controlled localizing multi-wall carbon nanotubes in polyvinylidene fluoride/acrylonitrile butadiene styrene blends to achieve balanced dielectric constant and dielectric loss.Compos. Sci. Technol.2021,212, 1−8..
Song, Y.; Zheng, Q. Concepts and conflicts in nanoparticles reinforcement to polymers beyond hydrodynamics.Prog. Mater. Sci.2016,84, 1−58..
Rueda, M. M.; Auscher, M. C.; Fulchiron, R.; Périé, T.; Martin, G.; Sonntag, P.; Cassagnau, P. Rheology and applications of highly filled polymers: A review of current understanding.Prog. Polym. Sci.2017,66, 22−53..
Yu, W.; Zhou, W.; Zhou, C. Linear viscoelasticity of polymer blends with co-continuous morphology.Polymer2010,51, 2091−2098..
Fukahori, Y.; Hon, A. A.; Jha, V.; Busfield, J. J. C. Modified Guth-Gold equation for carbon black-filled rubbers.Rubber Chem. Technol.2013,86, 218−232..
Malkin, A. Y. Rheology of filled polymers.Adv. Polym. Sci.1990,96, 69−97..
Cassagnau, P. Melt rheology of organoclay and fumed silica nanocomposites.Polymer2008,49, 2183−2196..
Jiang, W.; Tjong, S. C.; Li, R. K. Y. Brittle-tough transition in PP/EPDM blends: effects of interparticle distance and tensile deformation speed.Polymer2000,41, 3479−3482..
Denac, M.; Musil, V.; Šmit, I. Polypropylene/talc/SEBS (SEBS-g-MA) composites. Part 2. Mechanical properties.Compos. Part A: Appl. Sci. Manuf.2005,36, 1282−1290..
Liu, C.; Wang, J.; He, J. Rheological and thermal properties of m-LLDPE blends with m-HDPE and LDPE.Polymer2002,43, 3811−3818..
Su, R.; Wang, K.; Zhang, Q.; Chen, F.; Fu, Q.; Xu, W.; Na, B. Orientation and epitaxy in the injection-molded bars of linear low-density polyethylene/isotactic polypropylene blends: An infrared dichroism measurement.J. Phys. Chem. B2009,113, 7423−7429..
Jalali, Dil, E.; Favis, B. D. Localization of micro- and nano-silica particles in heterophase poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends.Polymer2015,76, 295−306..
Hadaeghnia, M.; Ahmadi, S.; Ghasemi, I.; Wood-Adams, P. M. Evolution of phase morphology, rheology, and electrical conductivity of PA6/POE blends containing graphene during annealing under SAOS.Macromolecules2022,55, 2714−2728..
Zhu, Y.; Ma, H.; Tong, L.; Fang, Z. "Cutting effect" of organoclay platelets in compatibilizing immiscible polypropylene/ polystyrene blends.J. Zhejiang Univ.-Sci. A 2008 , 9, 1614−1620..
Salehiyan. R.; Ray. S. S. Tuning the conductivity of nanocomposites through nanoparticle migration and interface crossing in immiscible polymer blends: a review on fundamental understanding.Macromol. Mater. Eng.2019,304, 1−33..
Yousfi, M.; Livi, S.; Dumas, A.; Crepin-Leblond, J.; Greenhill-Hooper, M.; Duchet-Rumeau, J. Compatibilization of polypropylene/ polyamide 6 blends using new synthetic nanosized talc fillers: morphology, thermal, and mechanical properties.J. Appl. Polym. Sci.2014,131, 1−12..
Lee, C.; Salehiyan, R.; Ham, D.; Cho, S.; Lee, S.; Kim, K.; Yoo, Y.; Hyun, K.; Lee, J.; Choi, W. Influence of carbon nanotubes localization and transfer on electrical conductivity in PA66/(PS/PPE)/CNTs nanocomposites.Polymer2016,84, 198−208..
Salehiyan, R.; Nofar, M.; Ray, S. S.; Ojijo, V. Kinetically controlled localization of carbon nanotubes in polylactide/poly(vinylidene fluoride) blend nanocomposites and their influence on electromagnetic interference shielding, electrical conductivity, and rheological properties.J. Phys. Chem. C2019,123, 19195−19207..
Zhao, X.; Li, B.; Liu, S.; Peng, L.; Huang, X.; Yu, W. Modeling linear and nonlinear rheology of industrial incompatible polymer blends.J. Rheol.2024,68, 187−204..
Bousmina, M. Effect of interfacial tension on linear viscoelastic behavior of immiscible polymer blends.Rheol. Acta1999,38, 251−254..
Shi, D.; Ke, Z.; Yang, J.; Gao, Y.; Wu, J.; Yin, J. Rheology and morphology of reactively compatibilized PP/PA6 blends.Macromolecules2002,35, 8005−8012..
Nofar, M.; Maani, A.; Sojoudi, H.; Heuzey, M. C.; Carreau, P. J. Interfacial and rheological properties of PLA/PBAT and PLA/PBSA blends and their morphological stability under shear flow.J. Rheol.2015,59, 317−333..
Payne, A. R.; Whittaker, R. E. Low strain dynamic properties of filled rubbers.Rubber Chem. Technol.1971,44, 440−478..
Hyun, K.; Wilhelm, M.; Klein, C. O.; Cho, K.; Nam, J. G.; Ahn, K. H.; Lee, S.; Ewoldt, R. H.; McKinley, G. H. A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS).Prog. Polym. Sci.2011,36, 1697−1753..
Hou, F.; Song, Y.; Zheng, Q. Influence of liquid isoprene rubber on strain softening of carbon black filled isoprene rubber nanocomposites.Chinese J. Polym. Sci.2021,39, 887−895..
Chen, Y.; Yang, Q.; Huang, Y.; Liao, X.; Niu, Y. Influence of phase coarsening and filler agglomeration on electrical and rheological properties of MWNTs-filled PP/PMMA composites under annealing.Polymer2015,79, 159−170..
Hadaeghnia, M.; Ahmadi, S.; Ghasemi, I.; Wood-Adams, P. M. Fractal structures of PA6/POE blend nanocomposites and their dynamic properties.J. Rheol.2023,67, 183−196..
Shao, W.; Wang, Q.; Li, K. Intercalation and exfoliation of talc by solid-state shear compounding (S3C) using pan-mill equipment.Polym. Eng. Sci.2005,45, 451−457..
Castillo, L.; López, O.; López, C.; Zaritzky, N.; García, M. A.; Barbosa, S.; Villar, M. Thermoplastic starch films reinforced with talc nanoparticles.Carbohydr. Polym.2013,95, 664−674..
Lin, S.; You, W.; Yu, W.; Wang, X. Key factors in mechanical reinforcement by double percolation network: particle migration and shear stability of filler network.Polymer2019,182, 1−9..
You, W.; Yu, W. Onset reduction and stabilization of cocontinuous morphology in immiscible polymer blends by snowmanlike janus nanoparticles.Langmuir2018,34, 11092−11100..
Cui, M.; Emrick, T.; Russell, T. P. Stabilizing liquid drops in nonequilibrium shapes by the interfacial jamming of nanoparticles.Science2013,342, 460−463..
0
浏览量
6
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构